逆映射定理的应用

1. 设$f: \mathbb{R}^{n}\to \mathbb{R}^{n}$且$f=(f_{1},f_{2},\cdots,f_{n})$.$\|Jf(x)\|\leq \frac{1}{2},f(x)\in C^{1}(\mathbb{R}^{n})$. 证明: $g(x)=x+f(x)$是一一映射.

证明: 首先证明$g: \mathbb{R}^{n}\to \mathbb{R}^{n}$为单射,设 $g(x_{1})=g(x_{2}),x_{1},x_{2}\in \mathbb{R}^{n}$, 那么有
$$\|x_{1}-x_{2}\|=\|f(x_{1})-f(x_{2})\|\leq \max\|Jf(x)\|\cdot \|x_{1}-x_{2}\|\leq \frac{1}{2}\|x_{1}-x_{2}\|$$
从而得
$$\|x_{1}-x_{2}\|=0, x_{1}=x_{2}$$
满射: 即证明 $g(x)=x+f(x)=y$在$\mathbb{R}^{n}$中有解,即证明$g$(局部)可逆
$$\|Jg(x)\|=\|I+Jf(x)\|\geq \|I\|-\|Jf(x)\|\geq \frac{1}{2}$$
由逆映射定理知$g$可逆. 从而 $g$为满射.

转载于:https://www.cnblogs.com/zhangwenbiao/p/5898813.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值