反函数 (逆映射) 存在定理

同胚映射:

E ⊂ R n E\subset \mathbb{R}^n ERn f ⃗ ( x ⃗ ) = ( f 1 ( x ⃗ ) , f 2 ( x ⃗ ) , … , f m ( x ⃗ ) ) \vec{f}(\vec{x})=(f_1(\vec{x}),f_2(\vec{x}),\dots,f_m(\vec{x})) f (x )=(f1(x ),f2(x ),,fm(x ))是一个定义于 E E E的向量函数。
作为映射,若 y ⃗ = f ⃗ ( x ⃗ ) : E ⟼ f ⃗ ( E ) \vec{y}=\vec{f}(\vec{x}):E\longmapsto \vec{f}(E) y =f (x )Ef (E)是一 一对应的,则其存在逆映射 x ⃗ = f ⃗ − 1 ( y ⃗ ) : f ⃗ ( E ) ⟼ E \vec{x}=\vec{f}^{-1}(\vec{y}):\vec{f}(E)\longmapsto E x =f 1(y )f (E)E
y ⃗ = f ⃗ ( x ⃗ ) \vec{y}=\vec{f}(\vec{x}) y =f (x ) E E E上连续且 x ⃗ = f ⃗ − 1 ( y ⃗ ) \vec{x}=\vec{f}^{-1}(\vec{y}) x =f 1(y ) f ⃗ ( E ) \vec{f}(E) f (E)上也连续,则称 y ⃗ = f ⃗ ( x ⃗ ) \vec{y}=\vec{f}(\vec{x}) y =f (x ) E ⟼ f ⃗ ( E ) E\longmapsto \vec{f}(E) Ef (E)同胚映射

逆映射存在定理:

y ⃗ = ( y 1 , y 2 , … , y n ) = ( f 1 ( x ⃗ ) , f 2 ( x ⃗ ) , … , f n ( x ⃗ ) ) = f ⃗ ( x ⃗ ) \vec{y}=(y_1,y_2,\dots,y_n)=(f_1(\vec{x}),f_2(\vec{x}),\dots,f_n(\vec{x}))=\vec{f}(\vec{x}) y =(y1,y2,,yn)=(f1(x ),f2(x ),,fn(x ))=f (x )是区域 D ⊂ R n D\subset \mathbb{R}^n DRn到区域 Ω ⊂ R n \Omega\subset \mathbb{R}^n ΩRn的一个 C 1 C^1 C1映射,并且在 x ⃗ 0 ∈ D \vec{x}_0\in D x 0D处有: ∂ ( f 1 , f 2 , … , f n ) ∂ ( x 1 , x 2 , … , x n ) ≠ 0 \frac{\partial (f_1,f_2,\dots,f_n)}{\partial (x_1,x_2,\dots,x_n)}\ne0 (x1,x2,,xn)(f1,f2,,fn)=0则存在 x ⃗ 0 \vec{x}_0 x 0的邻域 U ( x ⃗ 0 , δ ) ⊂ D U(\vec{x}_0,\delta)\subset D U(x 0,δ)D使得映射 y ⃗ = f ⃗ ( x ⃗ ) \vec{y}=\vec{f}(\vec{x}) y =f (x ) U ( x ⃗ 0 , δ ) U(\vec{x}_0,\delta) U(x 0,δ) f ⃗ ( U ( x ⃗ 0 , δ ) ) \vec{f}(U(\vec{x}_0,\delta)) f (U(x 0,δ)) C 1 C^1 C1同胚映射。

证明:
由于 { y 1 = f 1 ( x ⃗ ) y 2 = f 2 ( x ⃗ ) … y n = f n ( x ⃗ ) ⟺ { F 1 ( x ⃗ , y ⃗ ) = y 1 − f 1 ( x ⃗ ) F 1 ( x ⃗ , y ⃗ ) = y 2 − f 2 ( x ⃗ ) … F 1 ( x ⃗ , y ⃗ ) = y n − f n ( x ⃗ ) \begin{cases} y_1=f_1(\vec{x})\\ y_2=f_2(\vec{x})\\ \dots\\ y_n=f_n(\vec{x})\\ \end{cases} \Longleftrightarrow \begin{cases} F_1(\vec{x},\vec{y})=y_1-f_1(\vec{x})\\ F_1(\vec{x},\vec{y})=y_2-f_2(\vec{x})\\ \dots\\ F_1(\vec{x},\vec{y})=y_n-f_n(\vec{x})\\ \end{cases} y1=f1(x )y2=f2(x )yn=fn(x ) F1(x ,y )=y1f1(x )F1(x ,y )=y2f2(x )F1(x ,y )=ynfn(x ) ∂ ( F 1 , F 2 , … , F n ) ∂ ( x 1 , x 2 , … , x n ) = ( − 1 ) n ∂ ( f 1 , f 2 , … , f n ) ∂ ( x 1 , x 2 , … , x n ) ≠ 0 \frac{\partial (F_1,F_2,\dots,F_n)}{\partial (x_1,x_2,\dots,x_n)}=(-1)^n\frac{\partial (f_1,f_2,\dots,f_n)}{\partial (x_1,x_2,\dots,x_n)}\ne0 (x1,x2,,xn)(F1,F2,,Fn)=(1)n(x1,x2,,xn)(f1,f2,,fn)=0由隐函数存在定理: 在 y 0 的邻域 U ( y 0 , δ 0 ) 中唯一存在 C 1 的向量函数 x ⃗ = ( x 1 ( y ⃗ ) , x 2 ( y ⃗ ) , … , x n ( y ⃗ ) ) 在y_0的邻域U(y_0,\delta_0)中唯一存在C^1的向量函数\vec{x}=(x_1(\vec{y}),x_2(\vec{y}),\dots,x_n(\vec{y})) y0的邻域U(y0,δ0)中唯一存在C1的向量函数x =(x1(y ),x2(y ),,xn(y ))

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值