数学分析 向量函数微分学(第23章)

一. n n n维欧式空间与向量函数(23.1)在这里插入图片描述1. n n n维欧氏空间
(1)向量与向量空间:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(2) n n n维欧几里得空间:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

定理23.1:设 { P k } ⊂ R n \{P_k\}\sub R^n {Pk}Rn,则 { P k } \{P_k\} {Pk}为收敛点列的充要条件是:对 ∀ ε > 0 , ∃ K > 0 ∀ε>0,∃K>0 ε>0,K>0,当 k > K k>K k>K时,对 ∀ q ∈ N + ∀q∈N_+ qN+都有 ρ ( P k , P k + q ) < ε ( 5 ) ρ(P_k,P_{k+q})<ε\qquad(5) ρ(Pk,Pk+q)<ε(5)

2.向量函数
(1)概念:
在这里插入图片描述
在这里插入图片描述

注:① X × Y = { ( x , y )   ∣   x ∈ X , y ∈ Y } ⊂ R n + m X×Y=\{(x,y)\,|\,x∈X,y∈Y\}\sub R^{n+m} X×Y={(x,y)xX,yY}Rn+m称为 X X X Y Y Y直积

(2)运算:
在这里插入图片描述
在这里插入图片描述
3.向量函数的极限与连续
(1)向量函数的极限:
在这里插入图片描述
在这里插入图片描述
(2)向量函数的连续性:
在这里插入图片描述

定理23.2:设 f : X → Y , g : X → Y   ( X ⊂ R n , Y ⊂ R m ) , h : Y → Z ⊂ R r , α : X → R , a ∈ X , b = f ( a ) ∈ Y f:X→Y,g:X→Y\,(X\sub R^n,Y\sub R^m),h:Y→Z\sub R^r,α:X→R,a∈X,b=f(a)∈Y f:XY,g:XY(XRn,YRm),h:YZRr,α:XR,aX,b=f(a)Y;若 f , g , α f,g,α f,g,α在点 a a a连续, h h h在点 b b b连续,则按(6),(7),(8)式所定义的向量函数 f ± g , α f , h ∘ f f±g,αf,h\circ f f±g,αf,hf都在点 a a a连续
在这里插入图片描述

定理23.3:函数 f : X → R m f:X→R^m f:XRm在点 a ∈ X ⊂ R n a∈X\sub R^n aXRn连续的充要条件是::任何点列 { P k } ⊂ X \{P_k\}\sub X {Pk}X收敛于 a a a时, { f ( P k ) } ⊂ R m \{f(P_k)\}\sub R^m {f(Pk)}Rm都收敛于 f ( a ) f(a) f(a)
在这里插入图片描述

(3)连续的向量函数的性质:
在这里插入图片描述

定理23.4:若 D ⊂ R n D\sub R^n DRn是有界闭集, f : D → R m f:D→R^m f:DRm D D D上的连续函数,则 f ( D ) ⊂ R m f(D)\sub R^m f(D)Rm也是有界闭集
在这里插入图片描述

定理23.5:若 D ⊂ R n D\sub R^n DRn是有界闭集, f : D → R m f:D→R^m f:DRm D D D上的连续函数,则 f ( D ) f(D) f(D)的直积可达,即 ∃ P ′ , P ′ ′ ∈ D ∃P',P''∈D P,PD,使得 ∣ ∣ f ( P ′ ) − f ( P ′ ′ ) ∣ ∣ = max ⁡ x ′ , x ′ ′ ∈ D ∣ ∣ f ( x ′ ) − f ( x ′ ′ ) ∣ ∣ ||f(P')-f(P'')||=\max_{x',x''∈D}||f(x')-f(x'')|| f(P)f(P)=x,xDmaxf(x)f(x)
在这里插入图片描述

定理23.6:若 D ⊂ R n D\sub R^n DRn是有界闭集, f f f D D D上的连续函数,则 f f f D D D一致连续,即对 ∀ ε > 0 , ∃ δ ( ε ) ① > 0 ∀ε>0,∃δ(ε)^①>0 ε>0,δ(ε)>0,只要 x ′ , x ′ ′ ∈ D x',x''∈D x,xD ∣ ∣ x ′ − x ′ ′ ∣ ∣ < δ ||x'-x''||<δ xx<δ,就有 ∣ ∣ f ( x ′ ) − f ( x ′ ′ ) ∣ ∣ < ε ||f(x')-f(x'')||<ε f(x)f(x)<ε
注:① δ ( ε ) δ(ε) δ(ε)的含义是:只依赖于 ε ε ε δ δ δ

定理23.7:若 D ⊂ R n D\sub R^n DRn是道路连通集 ① ^① , f f f D D D上的连续函数,则 f ( D ) ⊂ R m f(D)\sub R^m f(D)Rm也是道路连通集
在这里插入图片描述
注:①这是指能用1条完全含于 D D D的连续曲线连接 D D D中任意2点

二.向量函数的微分(23.2)
1.向量函数的可微性:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.向量函数的可微条件
在这里插入图片描述

注:①如此形式的矩阵又叫 f f f雅可比矩阵,也常记作 J f ( x 0 ) J_f(x_0) Jf(x0);只要其中的所有偏导数存在,便可构成 J f ( x 0 ) J_f(x_0) Jf(x0),但此时 J f ( x 0 ) J_f(x_0) Jf(x0)不一定是 f f f的导数,因为由此不能保证 f f f x 0 x_0 x0可微

(1)必要条件:

定理23.8:若向量函数 f f f x 0 x_0 x0可微,则 f f f x 0 x_0 x0连续

定理23.9:若向量函数 f f f x 0 x_0 x0可微,则 f f f的全部 m m m个坐标函数 f i   ( i = 1 , 2... m ) f_i\,(i=1,2...m) fi(i=1,2...m) x 0 x_0 x0关于每个自变量 x j   ( j = 1 , 2... n ) x_j\,(j=1,2...n) xj(j=1,2...n)的1阶偏导数 ∂ f i ∂ x j ∣ x = x 0 \frac{\partial f_i}{\partial x_j}|_{x=x_0} xjfix=x0都存在,由这些偏导数组成的矩阵(7)便是 f f f x 0 x_0 x0的导数

(2)充分条件:

定理23.10:若向量函数 f f f在点 x 0 x_0 x0的某邻域 U ( x 0 ) U(x_0) U(x0)内处处存在1阶偏导数 ∂ f i ∂ x j   ( i = 1 , 2... m ; j = 1 , 2... n ) \frac{\partial f_i}{\partial x_j}\,(i=1,2...m;j=1,2...n) xjfi(i=1,2...m;j=1,2...n),且所有这些偏导数在点 x 0 x_0 x0连续,则 f f f x 0 x_0 x0可微

(3)充要条件:

定理23.11:设 D ⊂ R n D\sub R^n DRn为开集, x 0 ∈ D , f : D → R m x_0∈D,f:D→R^m x0D,f:DRm,则 f f f x 0 x_0 x0可微的充要条件是:存在1个( m m m n n n列的)矩阵函数 F : D → R m n F:D→R^{mn} F:DRmn,它在 x 0 x_0 x0连续(相当于它的 n n n个列向量函数都在 x 0 x_0 x0连续),并使得 f ( x ) − f ( x 0 ) = F ( x ) ( x − x 0 )   ( x ∈ D ) ( 8 ) f(x)-f(x_0)=F(x)(x-x_0)\,(x∈D)\qquad(8) f(x)f(x0)=F(x)(xx0)(xD)(8)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注:① ∣ ∣ F ( x ) − F ( x 0 ) ∣ ∣ ||F(x)-F(x_0)|| F(x)F(x0)表示矩阵的模;一般地,矩阵 A = ( a i j ) m × n A=(a_{ij})_{m×n} A=(aij)m×n的模可以采用多种定义方式,其中之一是 ∣ ∣ A ∣ ∣ = ∑ i = 1 m ∑ j = 1 n a i j 2 ||A||=\sqrt{\displaystyle\sum_{i=1}^m\displaystyle\sum_{j=1}^na^2_{ij}} A=i=1mj=1naij2 ,这相当于把 A A A看作 m n mn mn维向量,所以向量的模的性质对矩阵的模同样成立

2.可微向量函数的性质
(1)保持线性运算的性质:

定理23.12:设 f : D → R m , g : D → R m f:D→R^m,g:D→R^m f:DRm,g:DRm是2个在 x 0 ∈ D x_0∈D x0D处可微的函数, c ∈ R c∈R cR,则 c f , f ± g cf,f±g cf,f±g x 0 x_0 x0也可微,且 ( c f ) ′ ( x 0 ) = c f ′ ( x 0 ) , ( f ± g ) ′ ( x 0 ) = f ′ ( x 0 ) ± g ′ ( x 0 ) ( 14 ) (cf)'(x_0)=cf'(x_0),(f±g)'(x_0)=f'(x_0)±g'(x_0)\qquad(14) (cf)(x0)=cf(x0),(f±g)(x0)=f(x0)±g(x0)(14)

(2)求导的链式法则

定理23.13:设 f : D → R m f:D→R^m f:DRm x 0 ∈ D x_0∈D x0D可微, D ′ ⊂ R m D'\sub R^m DRm亦为开集, f ( D ) ⊂ D ′ , g : D ′ → R r f(D)\sub D',g:D'→R^r f(D)D,g:DRr y 0 = f ( x 0 ) y_0=f(x_0) y0=f(x0)可微,则复合函数 h = g ∘ f : D → R r h=g\circ f:D→R^r h=gf:DRr x 0 x_0 x0可微,且 h ′ ( x 0 ) = ( g ∘ f ) ′ ( x 0 ) = g ′ ( y 0 ) f ′ ( x 0 ) ( 15 ) h'(x_0)=(g\circ f)'(x_0)=g'(y_0)f'(x_0)\qquad(15) h(x0)=(gf)(x0)=g(y0)f(x0)(15)公式(15)也称为链式法则
在这里插入图片描述
在上述复合过程中,若令 u = g ( y ) , y = f ( x ) u=g(y),y=f(x) u=g(y),y=f(x),当用雅可比矩阵表示复合函数 ( g ∘ f ) ( x ) (g\circ f)(x) (gf)(x)的导数的链式法则(15)时,则有 [ ∂ u 1 ∂ x 1 . . . ∂ u 1 ∂ x n . . . . . . . . . ∂ u r ∂ x 1 . . . ∂ u r ∂ x n ] x = x 0 = [ ∂ u 1 ∂ y 1 . . . ∂ u 1 ∂ y m . . . . . . . . . ∂ u r ∂ y 1 . . . ∂ u r ∂ y m ] y = y 0 [ ∂ y 1 ∂ x 1 . . . ∂ y 1 ∂ x n . . . . . . . . . ∂ y m ∂ x 1 . . . ∂ y m ∂ x n ] x = x 0 \left[\begin{matrix}\frac{\partial u_1}{\partial x_1}&...&\frac{\partial u_1}{\partial x_n}\\...&...&...\\\frac{\partial u_r}{\partial x_1}&...&\frac{\partial u_r}{\partial x_n}\end{matrix}\right]_{x=x_0}=\left[\begin{matrix}\frac{\partial u_1}{\partial y_1}&...&\frac{\partial u_1}{\partial y_m}\\...&...&...\\\frac{\partial u_r}{\partial y_1}&...&\frac{\partial u_r}{\partial y_m}\end{matrix}\right]_{y=y_0}\left[\begin{matrix}\frac{\partial y_1}{\partial x_1}&...&\frac{\partial y_1}{\partial x_n}\\...&...&...\\\frac{\partial y_m}{\partial x_1}&...&\frac{\partial y_m}{\partial x_n}\end{matrix}\right]_{x=x_0} x1u1...x1ur.........xnu1...xnurx=x0=y1u1...y1ur.........ymu1...ymury=y0x1y1...x1ym.........xny1...xnymx=x0

(3)微分中值不等式:

定理23.14:设 D ⊂ R n D\sub R^n DRn是凸开集, f : D → R m f:D→R^m f:DRm,若 f f f D D D内可微,则对任意2点 a , b ∈ D a,b∈D a,bD,存在点 ξ = a + θ ( b − a )   ( 0 < θ < 1 ) \xi=a+θ(b-a)\,(0<θ<1) ξ=a+θ(ba)(0<θ<1),使得 ∣ ∣ f ( b ) − f ( a ) ∣ ∣ ≤ ∣ ∣ f ′ ( ξ ) ∣ ∣   ∣ ∣ b − a ∣ ∣ ① ( 18 ) ||f(b)-f(a)||≤||f'(\xi)||\,||b-a||^①\qquad(18) f(b)f(a)f(ξ)ba(18)
在这里插入图片描述
注:①这里的 ∣ ∣ f ′ ( ξ ) ∣ ∣ ||f'(\xi)|| f(ξ)是矩阵的模

3.黑塞矩阵与极值
(1)黑塞矩阵:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注:①黑塞矩阵又称海塞矩阵

(2)黑塞矩阵与极值:
在这里插入图片描述

定理23.15(极值的必要条件):设 D ⊂ R n D\sub R^n DRn为开集,实值函数 f : D → R f:D→R f:DR x 0 ∈ D x_0∈D x0D可微,且取极值,则:
x 0 x_0 x0必为 f f f的稳定点,即 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0
②又若 f f f x 0 x_0 x0的某邻域 U ( x 0 ) ⊂ D U(x_0)\sub D U(x0)D上存在连续2阶偏导数,则当 f ( x 0 ) f(x_0) f(x0)a为极小值时, f f f x 0 x_0 x0的黑塞矩阵 f ′ ′ ( x 0 ) f''(x_0) f(x0)为正定或半正定;当 f ( x 0 ) f(x_0) f(x0)a为极大值时, f f f x 0 x_0 x0的黑塞矩阵 f ′ ′ ( x 0 ) f''(x_0) f(x0)为负定或半负定
推论:若 f f f x 0 x_0 x0的黑塞矩阵 f ′ ′ ( x 0 ) f''(x_0) f(x0)为不定,则 f f f x 0 x_0 x0不取极值

定理23.16(极值的充分条件):上述函数 f f f若在 U ( x 0 ) ⊂ D U(x_0)\sub D U(x0)D上存在连续2阶偏导数,且 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0,则当 f ′ ′ ( x 0 ) f''(x_0) f(x0)为正定(负定)时, f f f x 0 x_0 x0取严格极小(大)值

三.反函数定理与隐函数定理(23.3)
在这里插入图片描述
1.反函数定理
(1)向量函数的反函数:
在这里插入图片描述
(2)反函数定理:

定理23.17:设 D ⊂ R n D\sub R^n DRn是开集,函数 f : D → R n f:D→R^n f:DRn满足以下条件:
( i )   (i)\: (i) D D D上可微,且 f ′ f' f连续
( i i )   ∃ x 0 ∈ D (ii)\:∃x_0∈D (ii)x0D,使 d e t   f ′ ( x 0 ) ≠ 0 det\,f'(x_0)≠0 detf(x0)=0
则存在邻域 U = U ( x 0 ) ⊂ D U=U(x_0)\sub D U=U(x0)D使得:
1 °   f 1°\:f 1°f U U U上是一一映射,从而存在反函数 f − 1 : V → U f^{-1}:V→U f1:VU,其中 V = f ( U ) V=f(U) V=f(U)是开集
2 °   f − 1 2°\:f^{-1} 2°f1 V V V上存在连续导数 ( f − 1 ) ′ (f^{-1})' (f1),且 ( f − 1 ) ′ ( y ) = ( f ′ ( x ) ) − 1 , 其 中 x = f − 1 ( y ) , y ∈ V ( 3 ) (f^{-1})'(y)=(f'(x))^{-1},其中x=f^{-1}(y),y∈V\qquad(3) (f1)(y)=(f(x))1,x=f1(y),yV(3)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注:①并非所有函数的反函数都能由其自变量用显式来表示

2.隐函数定理
(1)隐函数:
在这里插入图片描述
(2)隐函数定理:

定理23.18:设 X ⊂ R n , Y ⊂ R m , Ω = X × Y ⊂ R n + m X\sub R^n,Y\sub R^m,Ω=X×Y\sub R^{n+m} XRn,YRm,Ω=X×YRn+m都是开集, F : Ω → R m F:Ω→R^m F:ΩRm,如果 F F F满足下列条件:
( i )      ∃ x 0 ∈ X , y 0 ∈ Y (i)\:\:\:\,∃x_0∈X,y_0∈Y (i)x0X,y0Y,使得 F ( x 0 , y 0 ) = 0 F(x_0,y_0)=0 F(x0,y0)=0
( i i )     F (ii)\:\,\,F (ii)F Ω Ω Ω上可微,且 F ′ F' F连续
( i i i )   det ⁡ F y ′ ( x 0 , y 0 ) ≠ 0 (iii)\:\det{F'_y(x_0,y_0)}≠0 (iii)detFy(x0,y0)=0
则存在点 x 0 x_0 x0 n n n维邻域 U = U ( x 0 ) ⊂ X U=U(x_0)\sub X U=U(x0)X和点 y 0 y_0 y0 m m m维邻域 V = V ( y 0 ) ⊂ Y V=V(y_0)\sub Y V=V(y0)Y,使得在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) n + m n+m n+m维邻域 W = X × Y ⊂ Ω W=X×Y\subΩ W=X×YΩ内,由方程(14)唯一地确定了隐函数 f : U → V f:U→V f:UV,其满足
1 °   y 0 = f ( x 0 ) 1°\:y_0=f(x_0) 1°y0=f(x0)
2 °   2°\: 2° x ∈ U x∈U xU时, ( x , f ( x ) ) ∈ W (x,f(x))∈W (x,f(x))W,且有恒等式(15),即 F ( x , f ( x ) ) ≡ 0 F(x,f(x))\equiv0 F(x,f(x))0
3 °   f 3°\:f 3°f U U U内存在连续偏导数 f ′ f' f,且 f ′ ( x ) = − [ F y ′ ( x , y ) ] − 1 F x ′ ( x , y )   ( ( x , y ) ∈ W ) ( 18 ) f'(x)=-[F'_y(x,y)]^{-1}F'_x(x,y)\,((x,y)∈W)\qquad(18) f(x)=[Fy(x,y)]1Fx(x,y)((x,y)W)(18)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.拉格朗日乘数法:
在这里插入图片描述

定理23.19:对以上所设的函数 f , φ f,φ f,φ,若满足以下条件:
( i )      f , φ (i)\:\:\:\:f,φ (i)f,φ D D D内有连续导数
( i i )     φ ( x 0 ) = φ ( y 0 , z 0 ) = 0 (ii)\:\,\,φ(x_0)=φ(y_0,z_0)=0 (ii)φ(x0)=φ(y0,z0)=0
( i i i )   r a n k   φ ′ ( x 0 ) = r a n k [ φ y ′ ( y 0 , z 0 ) , φ z ′ ( y 0 , z 0 ) ] = m (iii)\:rank\,φ'(x_0)=rank[φ'_y(y_0,z_0),φ'_z(y_0,z_0)]=m (iii)rankφ(x0)=rank[φy(y0,z0),φz(y0,z0)]=m
( i v )    x 0 = ( y 0 , z 0 ) (iv)\:\,x_0=(y_0,z_0) (iv)x0=(y0,z0) f f f在条件(25)下的条件极值点
∃ Λ 0 ∈ R m ∃Λ_0∈R^m Λ0Rm,使得 ( x 0 , Λ 0 ) (x_0,Λ_0) (x0,Λ0)是(26)式所设函数 L L L的稳定点,即满足 L ′ ( x 0 , Λ 0 ) = [ L x ( x 0 , Λ 0 ) + L λ ( x 0 , Λ 0 ) ] = 0 ( 27 ) L'(x_0,Λ_0)=[L_x(x_0,Λ_0)+L_λ(x_0,Λ_0)]=0\qquad(27) L(x0,Λ0)=[Lx(x0,Λ0)+Lλ(x0,Λ0)]=0(27)但因 L λ ( x 0 , Λ 0 ) ] = [ φ ( x 0 ) ] T = 0 ( L_λ(x_0,Λ_0)]=[φ(x_0)]^T=0( Lλ(x0,Λ0)]=[φ(x0)]T=0(条件 ( i i ) ) (ii)) (ii)),故(27)式等同于 L x ( x 0 , Λ 0 ) ] = f ′ ( x 0 ) + Λ 0 T φ ′ ( x 0 ) = 0 ( 28 ) L_x(x_0,Λ_0)]=f'(x_0)+Λ_0^Tφ'(x_0)=0\qquad(28) Lx(x0,Λ0)]=f(x0)+Λ0Tφ(x0)=0(28)
在这里插入图片描述

  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值