Unity 用ml-agents机器学习造个游戏AI吧(1)(Windows环境配置)

前言:以前觉得机器学习要应用于游戏AI,还远得很。
最近看到一些资料后,突发兴致试着玩了玩Unity机器学习,才发觉机器学习占领游戏AI的可能性和趋势。

Unity训练可爱柯基犬Puppo

  • 机器学习训练出的游戏AI,模型可能数据庞大,但是这完全可以部署于服务器。
  • 目前绝大部分游戏AI都是人工制作,工作量庞大。机器学习可以解放生产力,放台主机训练让其自己培养出更实的AI。

ml-agents介绍

Unity Machine Learning Agents (ML-Agents) 是一款开源的 Unity 插件, 使得我们得以在游戏环境和模拟环境中训练智能 agents。
它可以使用 reinforcement learning(强化学习)、imitation learning(模仿学习)、neuroevolution(神经进化)或其他机器学习方法,
通过简单易用的 Python API进行控制,对 Agent 进行训练。

环境配置

配置示例:Windows 10系统
其次要注意,各软件版本应当互相匹配(太高也不行,例如python 3.7会翻车),目前示例:
Anaconda3 + python 3.6 + CUDA toolkit 9.0 + tensorflow 1.7.1

1.下载/安装python 3.6

https://www.python.org/downloads/release/python-368/

2.下载/安装/配置Anaconda3

2.1 下载并安装Anaconda3

https://www.anaconda.com/distribution/#windows

2.2 更改环境变量

编辑系统变量的"Path"变量,添加下面这些新路径(%UserProfile%要根据自己的实际安装位置替换成正确的路径):

%UserProfile%\Anaconda3\Scripts
%UserProfile%\Anaconda3\Scripts\conda.exe
%UserProfile%\Anaconda3
%UserProfile%\Anaconda3\python.exe

1409576-20190330231724758-145128756.png

3.配置GPU训练环境

3.1 下载并安装CUDA 9.0 通用并行计算架构

https://developer.nvidia.com/cuda-90-download-archive

在安装之前,必须保证关掉任何正在运行的Unity或者Visual Studio程序。

3.2 下载 Nvidia cuDNN 深度神经网络的GPU加速库(需要注册Nvdia账号,而且注意版本要for CUDA 9.0)

https://developer.nvidia.com/cudnn

3.3 添加cuDNN库到CUDA 9.0

将下载好的cuDNN库cuda目录的三个文件夹(bin,include,lib),复制覆盖到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0文件夹里。

3.4 再次更改环境变量

添加系统变量:"CUDA_HOME",变量值为

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0

1409576-20190330235100669-1016329997.png

编辑系统变量"Path",添加如下路径:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\lib\x64
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\extras\CUPTI\libx64

1409576-20190330235036092-1636697077.png

3.5 配置GPU训练环境

首先要打开Anaconda Prompt窗口 (可以通过在windows开始菜单搜索)

打开之后,首先要创建一个新的Conda环境,输入如下命令:

conda create -n ml-agents python=3.6

1409576-20190330233306257-1874505419.png

中间会有问要不要安装新包,输入y并回车就完事了。

为了使用这个环境,还得先激活它,输入如下命令:

activate ml-agents

1409576-20190330232735672-1198585811.png

输入后会看到左边()里的内容变成ml-agents

然后为了安装tensorflow,输入如下命令(为了契合版本,这里选择的是1.7.1):

pip uninstall tensorflow
pip install tensorflow-gpu==1.7.1

安装成功界面如下:

1409576-20190331000748228-645124201.png

4.下载并安装 Unity的ml-agents插件

(如果重新打开了一个新的Prompt窗口记得得重新激活ml-agents)

下载方法:

git clone https://github.com/Unity-Technologies/ml-agents.git

然后在Anaconda Promptc窗口定位到你下载项目的目录ml-agents文件夹的ml-agents文件夹

cd C:\Downloads\ml-agents\ml-agents

然后输入如下命令:

pip install -e .

如果提示找不到setup.py,说明定位路径不对,要检查一下

结语

看到这里就已经证明该配置好的配置好了,终于可以松口气了。可以关掉电脑,去泡杯咖啡坐下来好好休息一下了。如果还想继续的话,不妨看看下一篇博文。

下一篇博文将介绍一个Unity ml-agents机器学习的入门案例:

https://www.cnblogs.com/KillerAery/p/10631310.html

转载于:https://www.cnblogs.com/KillerAery/p/10629963.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值