机器人关节空间轨迹规划--S型速度规划

  • 关节空间 VS 操作空间

  关节空间与操作空间轨迹规划流程图如下(上标$i$和$f$分别代表起始位置initial和目标位置final):

 

  在关节空间内进行轨迹规划有如下优点:

  1. 在线运算量更小,即无需进行机器人的逆解或正解解算
  2. 不受机器人奇异构型影响
  3. 可以根据机器人或驱动器手册直接确定最大速度或力矩

其缺点是对应操作空间的轨迹无法预测,增加了机械臂与环境碰撞的可能。例如,考虑下面的二连杆机构,关节运动的限制为:$0^{\circ} \le \theta_1 \le 180^{\circ}$,$0^{\circ} \le \theta_2 \le 150^{\circ}$

   下图中,左侧为关节空间内规划的线性运动轨迹,而其对应在操作空间的轨迹却是弧线。机构末端的可达空间在图中由灰色背景表示,其大小和形状受关节运动范围的影响。

   下图在操作空间中规划了一条直线轨迹,其对应的关节空间轨迹为一弧线,且在运动过程中超出了关节值限制。操作空间内进行轨迹规划优点是直观,缺点是计算量大(需要计算逆解),会遇到奇异性问题以及关节运动超限等。

  到底是选择在关节空间还是操作空间内进行轨迹规划,取决于任务需要。需要考虑避障或必须沿特定轨迹运动时选择操作空间轨迹规划,只需考虑速度、力矩、关节范围等运动约束时选择关节空间轨迹规划(The joint space scheme is appropriate to achieve fast motions in a free space)。

  • 梯形速度曲线

  运动控制系统中常用的梯形速度曲线如下图所示,会出现加速度不连续的情形(从$k_{aj}$到0的跳变),这样可能会导致机械系统出现冲击或不可预料的振动,不过由于机械系统存在一定的弹性并不是绝对刚体,这种加速度不连续造成的冲击会被机械机构滤除或减轻。而对于高速重载的机器人来说,这种加速度不连续造成的影响就不能忽略了。可以参考知乎上这个问题:多轴插补为什么普遍使用梯形速度曲线?

  •  S型速度曲线

   为了使加速度连续,可对梯形速度规划中的加速度曲线进行修改,使加速度曲线变为连续的二次曲线(a)或者梯形曲线(b),如下图所示。其中,$\tau'$为加速段时间,$\lambda_jk_{vj}$为第$j$个关节的最大运动速度

 

  下面考虑a方法(Linear Trajectory with Polynomial Blends),关节$j$的运动边界条件如下,即关节$j$初始时刻位置为$q_j^i$,初始速度加速度为0,$\tau'$时刻加速到最大速度$\lambda_ik_{vj}sign(D_i)$,$k_{vj}$为理论上关节$j$允许的最大速度,$\lambda_j$为一比例系数($0 \le \lambda_j \le 1$),$D_j$为从起始位置到目标位置的位移,它是一个有正负的数值。

 

  根据边界条件加速度二次曲线表达式为:$k(t-\tau')t$,对其进行积分,可得$\dot{q_j}(t)=\frac{1}{6}k(2t-3\tau')t^2+C$,根据速度边界条件可知$C=0$,$k=\frac{-6}{\tau'^3}\lambda_jk_{vj}$。于是推算出加速度、速度、位置的表达式分别为:$$\begin{cases}& q_j(t)=q_j^i-\frac{1}{\tau'^3}\lambda_jk_{vj}sign(D_j)(\frac{1}{2}t-\tau')t^3\\&\dot{q_j}(t)=-\frac{1}{\tau'^3}\lambda_jk_{vj}sign(D_j)(2t-3\tau')t^2\\&\ddot{q_j}(t)=-\frac{6}{\tau'^3}\lambda_jk_{vj}sign(D_j)(t-\tau')t  \end{cases}$$

  加速度在$t=\tau'/2$时最大,其幅值为$\left |\ddot{q}_{jmax} \right |=\frac{3}{2}\frac{\lambda_jk_{vj}}{\tau'}=\upsilon_j k_{aj}$,则有:$$\tau'=\frac{3}{2}\frac{\lambda_jk_{vj}}{\upsilon_j k_{aj}}$$

  根据上式和$q_j(t)$的表达式,可以计算出加速阶段的位移为:$$|q_j^i-q_j(\tau')|=\frac{3}{4}\frac{(\lambda_jk_{vj})^2}{\upsilon_j k_{aj}}$$

  速度曲线与时间轴围成的面积为$|D_j|$,根据计算可以得到关系式:$$t'_f=\tau'+\frac{|D_j|}{\lambda_jk_{vj}}$$

  在加速度为0的阶段(最大速度阶段,$\tau' \le t \le \tau'+h'$),关节速度表达式为:$$q_i(t)=q_j(\tau')+(t-\tau')\lambda_jk_{vj}sign(D_j)$$

  减速阶段与加速阶段对称($t'_f=2\tau'+h'$),减速阶段在时间段$\tau'+h' \le t \le t'_f$上的轨迹为:$$\begin{cases}&q_j(t)=q_j^f+\frac{1}{2}[\frac{1}{\tau'^3}(t-3\tau'-h')(t-\tau'-h')^3+(2t-3\tau'-2h')]\lambda_jk_{vj}sign(D_j) \\ &\dot{q_j}(t)=[\frac{1}{\tau'^3}(2t-5\tau'-2h')(t-\tau'-h')^2+1]\lambda_jk_{vj}sign(D_j)  \\  &\ddot{q_j}(t)= \frac{6}{\tau'^3}(t-2\tau'-h')(t-\tau'-h')\lambda_jk_{vj}sign(D_j)\end{cases}$$

  如果目标点距离初始位置过近,可能达不到最大速度和加速度就要开始减速,考虑以最大速度做匀速直线运动阶段的时间为0这种临界状态(The minimum time $t_f$ is obtained when the parameters $\lambda_j$ and $\upsilon_j$ are the largest),为了能以最大速度运动,位移$|D_j|$必须满足如下条件:$$|D_j| > \frac{3}{2}\frac{k_{vj}^2}{k_{aj}}$$  如果该条件不能满足,则最大速度值应为:$$k'_{vj}=\sqrt{\frac{2}{3}|D_j|k_{

  • 4
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值