弱占优策略--Weakly Dominant Strategy

本文介绍了博弈论中的两种策略均衡概念——弱占优策略均衡与严占优策略均衡。弱占优策略是指无论对手如何选择,该策略至少不比其他策略差;而严占优策略则指无论对手如何选择,该策略总是优于其他策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Weakly Dominant Strategy Equilibrium(均衡)。

先说弱占优。一个策略弱占优就是说,无论其他人采取什么样的策略,这个策略的回报都大于等于其他策略的回报。如果所有人都使用他们的弱占优策略 ,那么这就是一个弱占优策略均衡

严格占优策略就是,无论其他人采取什么策略,这个策略的回报都严格大于其他策略。严占优均衡就是大家都使用严占优策略。

可以参考这个wiki:

http://en.wikipedia.org/wiki/Dominant_strategy

### 数据高效且监督的计算病理学方法 在全切片图像(WSI)的计算病理学中,数据高效的监督方法旨在减少对大规模标注数据的需求,同时保持较高的预测准确性。这些方法通过引入特定的技术框架来应对WSI特有的挑战。 #### 多实例学习(MIL) 多实例学习是一种有效的监督策略,在处理WSI时尤为有用。具体来说,整个幻灯片被划分为多个小区域或“实例”,而每个滑动窗口对应一个包(bag)。对于给定的一组未标记的小图块,如果其中至少有一个属于阳性类别,则该包被认为是阳性的;反之则为阴性[^1]。 ```python def create_bags(slide_image, patch_size=256): """将整张幻灯片分割成固定大小的小图块""" patches = [] width, height = slide_image.size for i in range(0, width-patch_size+1, patch_size//2): # 使用步长patch_size/2实现重叠采样 for j in range(0, height-patch_size+1, patch_size//2): patch = slide_image.crop((i, j, i+patch_size, j+patch_size)) patches.append(patch) return patches ``` 这种方法允许算法仅依赖于幻灯片级别的标签来进行训练,而不是精确到每一个细胞或者组织结构上的细粒度注解。因此大大降低了人工成本,并提高了模型泛化能力。 #### 训练流程优化 为了进一步提高效率并降低资源消耗,研究者们还设计了一套完整的MIL分类管道: 1. 对每轮迭代中的所有样本执行一次前向传播; 2. 根据得到的结果对同一张幻灯片内部的不同实例进行排序; 3. 只选取排名最高的那个作为代表参与反向传播更新参数[^2]。 这种机制不仅简化了传统意义上的逐像素标注过程,而且能够聚焦最具判别力的部分特征,从而提升整体性能表现。 综上所述,针对全切片图像的数据高效且监督计算病理学方案主要依靠多实例学习理论以及精心构建的学习架构共同作用下得以实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值