《中国人工智能学会通讯》——9.10 集成学习的动机和优势

9.10 集成学习的动机和优势

与单一的学习模型相比,集成学习模型的优势在于能够把多个单一学习模型有机地结合起来,获得一个统一的集成学习模型,从而获得更准确、稳定和强壮的结果。在美国 NETFLIX 电影推荐比赛中,基于集成学习的推荐算法获得了第一名。在多次 KDD 和 ICDM 的数据挖掘竞赛中,基于集成学习的算法都取得了最好的成绩。集成学习算法已成功应用于智能交通中的行人检测、车辆检测等,图像和视频处理中动作检测、人物追踪、物体识别等,生物信息学蛋白质磷酸化位点预测、基因组功能预测、癌症预测等,数据挖掘中的脑电数据挖掘、数据流挖掘等。近年来,各种各样的集成学习模型相继提出,并应用于各种类型的数据集中[1-2] 。此外,在大数据时代,存在着大量多源异构数据。在进行模式挖掘的过程中,往往需要同时用到来自不同数据源且具有不同结构的数据。例如在蛋白质功能的预测上,需要用到基因调控网络、蛋白质与蛋白质相互作用网络、mRNA 网络等多种数据。因此,设计高效的多层次、多角度的自适应集成学习模型是解决多源异构海量数据的方法之一。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值