CFAL2复习Day3:
今天的知识点是一元线性回归中的SEE,全称:Standard Error of Estimate。我把它记为估计的标准误差,不知道对不对。考纲对这个知识点的要求是,要会计算并解释。
计算公式:
这是一个变量的SEE的计算公式,
分子是计算样本观测实际值与预测值之间的差异,称为回归残差(regression residual,ε),通常是指误差项error term.求平方后,可以叫做剩余平方和。
整个公式与计算标准差的公式非常像,除了分母由n-1变为n-2之外,在计算SEE中,n-2是指自由度(degrees of freedom),因为一共有n个观察值,而两个估计的参数,b0的估计、b1的估计占了2个,因此整个公式只有n-2个自由度了。
怎么理解Standard Error of Estimate
对着公式看可能比较容易理解,回归残差的平方和,代表了实际值和预计值的偏差的平方和,很明显SEE越大,偏差越大。因此,一个比较小的SEE,反映了一个更好的预测结果
本文介绍了线性回归中的Standard Error of Estimate(估计标准误差),探讨了其计算公式和理解。SEE反映了实际值与预测值的偏差,数值越小,预测效果越好。它是衡量线性回归模型捕捉因变量与自变量关系的一个统计指标。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



