求与下面谓词公式等值的前束范式_第二章 等值演算小结

本文回顾了等值演算的概念,强调了在大量命题变元时利用等值式简化公式的重要性。基本等值式是核心,特别是蕴涵等值式、吸收律和德摩根定律。此外,介绍了公式等值的用途,如化简、判断类型和求解范式,以及极小项和极大项在析取范式和合取范式中的角色。
摘要由CSDN通过智能技术生成

第二章我们学习了等值演算,记得讲这一章的那天我朝窗外看了一眼,A楼南面的晚樱树光秃秃的,现在已经花骨朵万千(简称花千骨),已经过去很久了呢,讲了什么内容呢,一起来回顾一下。

49d24f5296668f386709bdc43d798bea.png

一.等值演算

如果两个公式A与B含有相同的命题变元,如果在所有指派下,A与B的真值都相同,则说明这两个公式是等值的。

判断两个公式是否等值,最直接的方法就是用真值表法,判断A与B是否在所有指派下同真值,或者判断A等价B是否是重言式。

但是当命题变元较多的是时候,真值表法判断公式等值的工作量是很大的。这时,等值演算法的强大功能就凸显出来了。

等值演算法是利用已知的等值式通过代换得到新的等值式。

c833389d077812b70bd07798f89448ec.png

二.基本等值式

本章的16组基本等值式是基础,常用且重要,以它们为基础进行运算,可以证明公式等值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值