java 多元线性回归_手动计算多元线性回归(OLS)的置信区间

这篇博客介绍了如何手动计算多元线性回归中的置信区间,作者通过R代码展示了如何计算单个系数的标准误差,并在不同数据集上进行验证。虽然在简单线性回归中公式有效,但在涉及多个变量时,该方法产生了错误的结果。
摘要由CSDN通过智能技术生成

我试图了解如何手动计算多元线性回归(OLS)的置信区间 . 我的问题是我不知道如何计算所有单个系数的标准误差 .

chart?cht=tx&chl=SE=%5Cfrac%7B%5Csqrt%7B%5Cfrac%7B%5CSigma%7By_i-y%27_i%7D%7D%7Bn-2%7D%7D%7D%7B%5Csqrt%7B%5CSigma%7B(x_i-x%27)%5E2%7D%7D%7D

事实证明,该公式有效 . 但是,我并没有完全理解这个公式 . 例如,为什么(-2)位于公式的顶部 . 为了验证正确性,我编写了以下已经显示标准错误的代码:

x

y

QR

summary(QR, se='boot')

LM

alligator = data.frame(

lnLength = c(3.78, 3.71, 3.73, 3.78),

lnWeight = c(4.43, 4.38, 4.42, 4.25)

)

alli.mod1 = lm(lnWeight ~ ., data = alligator)

newdata = data.frame(

lnLength = c(3.78, 3.71, 3.73, 3.78)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值