动点四边形周长最短_如图.已知平面直角坐标系.A.B两点的坐标分别为A.是y轴上的一个动点.则当p=-$\frac{14}{3}$时.△PAB的周长最短,是y轴上的两个动点.则当b=-$\frac{2...

分析 (1)根据题意,设出并找到B(4,-1)关于x轴的对称点是B',其坐标为(4,1),进而可得直线AB'的解析式,进而可得答案;

(2)作点A关于y轴的对称点A′,则A′的坐标为(-4,-6),把A′向上平移6个单位得到点B'(-4,0),连接BB′,与y轴交于点D,易得四边形A′B′DC为平行四边形,得到CA′=DB′=CA,则AC+BD=BB′,根据两点之间线段最短得到此时AC+BD最小,即四边形ABDC的周长最短.然后用待定系数法求出直线BB′的解析式y=-$\frac{1}{6}$x-$\frac{2}{3}$,易得D点坐标为(0,-$\frac{2}{3}$),则有b-6=-$\frac{20}{3}$,即可求出b的值;

(3)根据对称轴的性质,可得存在使四边形ABMN周长最短的点M、N,当且仅当m=$\frac{5}{2}$,n=-$\frac{10}{3}$时成立.

解答 解:(1)设点B(8,-2)关于y轴的对称点是B',其坐标为(-8,-2),

设直线AB'的解析式为y=kx+b,

把A(4,-6),B'(-8,-2)代入得:$\left\{\begin{array}{l}{4k+b=-6}\\{-8k+b=-2}\end{array}\right.$,

解得$\left\{\begin{array}{l}{k=-\frac{1}{3}}\\{b=-\frac{14}{3}}\end{array}\right.$,

∴y=-$\frac{1}{3}$x-$\frac{14}{3}$,

令x=0得x=-$\frac{14}{3}$,

即p=-$\frac{14}{3}$.

故答案为:-$\frac{14}{3}$;

(2)作点A关于y轴的对称点A′,则A′的坐标为(-4,-6),把A′向上平移6个单位得到点B'(-4,0),连接BB′,与y轴交于点D,如图,

∴CA′=CA,

又∵C(0,b),D(0,b+6),

∴CD=,6,

∴A′B′∥CD,

∴四边形A′B′DC为平行四边形,

∴CA′=DB′,

∴CA=DB′,

∴AC+BD=BB′,此时AC+BD最小,

∵CD与AB的长一定,

∴此时四边形ABDC的周长最短.

设直线BB′的解析式为y=kx+b,

把B(8,-2)、B'(-4,0)分别代入得,

8k+b=-2,-4k+b=0,

解得k=-$\frac{1}{6}$,b=-$\frac{2}{3}$,

∴直线BB′的解析式为y=-$\frac{1}{6}$x-$\frac{2}{3}$,

令x=0,则y=-$\frac{2}{3}$,

∴D点坐标为(0,-$\frac{2}{3}$),

∴b-6=-$\frac{2}{3}$,

∴b=-$\frac{20}{3}$;

故答案为:-$\frac{20}{3}$.

(3)存在使四边形ABMN周长最短的点M、N,

作A关于y轴的对称点A′,作B关于x轴的对称点B′,连接A′B′,与x轴、y轴的交点即为点M、N,

∴A′(-4,-6),B′(8,2),

∴直线A′B′的解析式为:y=$\frac{2}{3}$x-$\frac{10}{3}$,

∴M(5,0),N(0,-$\frac{10}{3}$).

∴m=5,n=-$\frac{10}{3}$.

故答案为:5,-$\frac{10}{3}$.

点评 本题考查了轴对称-最短路线问题:通过对称,把两条线段的和转化为一条线段,利用两点之间线段最短解决问题.也考查了坐标变换以及待定系数法求一次函数的解析式.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值