分析 (1)根据题意,设出并找到B(4,-1)关于x轴的对称点是B',其坐标为(4,1),进而可得直线AB'的解析式,进而可得答案;
(2)作点A关于y轴的对称点A′,则A′的坐标为(-4,-6),把A′向上平移6个单位得到点B'(-4,0),连接BB′,与y轴交于点D,易得四边形A′B′DC为平行四边形,得到CA′=DB′=CA,则AC+BD=BB′,根据两点之间线段最短得到此时AC+BD最小,即四边形ABDC的周长最短.然后用待定系数法求出直线BB′的解析式y=-$\frac{1}{6}$x-$\frac{2}{3}$,易得D点坐标为(0,-$\frac{2}{3}$),则有b-6=-$\frac{20}{3}$,即可求出b的值;
(3)根据对称轴的性质,可得存在使四边形ABMN周长最短的点M、N,当且仅当m=$\frac{5}{2}$,n=-$\frac{10}{3}$时成立.
解答 解:(1)设点B(8,-2)关于y轴的对称点是B',其坐标为(-8,-2),
设直线AB'的解析式为y=kx+b,
把A(4,-6),B'(-8,-2)代入得:$\left\{\begin{array}{l}{4k+b=-6}\\{-8k+b=-2}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-\frac{1}{3}}\\{b=-\frac{14}{3}}\end{array}\right.$,
∴y=-$\frac{1}{3}$x-$\frac{14}{3}$,
令x=0得x=-$\frac{14}{3}$,
即p=-$\frac{14}{3}$.
故答案为:-$\frac{14}{3}$;
(2)作点A关于y轴的对称点A′,则A′的坐标为(-4,-6),把A′向上平移6个单位得到点B'(-4,0),连接BB′,与y轴交于点D,如图,
∴CA′=CA,
又∵C(0,b),D(0,b+6),
∴CD=,6,
∴A′B′∥CD,
∴四边形A′B′DC为平行四边形,
∴CA′=DB′,
∴CA=DB′,
∴AC+BD=BB′,此时AC+BD最小,
∵CD与AB的长一定,
∴此时四边形ABDC的周长最短.
设直线BB′的解析式为y=kx+b,
把B(8,-2)、B'(-4,0)分别代入得,
8k+b=-2,-4k+b=0,
解得k=-$\frac{1}{6}$,b=-$\frac{2}{3}$,
∴直线BB′的解析式为y=-$\frac{1}{6}$x-$\frac{2}{3}$,
令x=0,则y=-$\frac{2}{3}$,
∴D点坐标为(0,-$\frac{2}{3}$),
∴b-6=-$\frac{2}{3}$,
∴b=-$\frac{20}{3}$;
故答案为:-$\frac{20}{3}$.
(3)存在使四边形ABMN周长最短的点M、N,
作A关于y轴的对称点A′,作B关于x轴的对称点B′,连接A′B′,与x轴、y轴的交点即为点M、N,
∴A′(-4,-6),B′(8,2),
∴直线A′B′的解析式为:y=$\frac{2}{3}$x-$\frac{10}{3}$,
∴M(5,0),N(0,-$\frac{10}{3}$).
∴m=5,n=-$\frac{10}{3}$.
故答案为:5,-$\frac{10}{3}$.
点评 本题考查了轴对称-最短路线问题:通过对称,把两条线段的和转化为一条线段,利用两点之间线段最短解决问题.也考查了坐标变换以及待定系数法求一次函数的解析式.