动点四边形周长最短_几何辅助线:四边形的动点问题

本文通过多个例题探讨了动点在四边形周长最短情况下的问题,涉及矩形、直角梯形等几何图形。在不同条件下,点P的位置会影响等腰三角形的形成,进而影响四边形的性质。通过解题过程,展示了如何找到点P的坐标以使△ODP成为腰长为5的等腰三角形,并探讨了动点在不同轨迹上如何影响四边形的周长和形状。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为       . e279f4f2ed9368da47d8a53fb83298f5.png 【解答】解:(1)OD是等腰三角形的底边时,P就是OD的垂直平分线与CB的交点,此时OP=PD≠5; (2)OD是等腰三角形的一条腰时: ①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点, 在直角△OPC中,CP=39426b21b3140eaba2ac668ba6abce65.png2463ce33bf1761ccffae12b297e7335c.png=3,则P的坐标是(3,4). ②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点, 过D作DM⊥BC于点M, 在直角△PDM中,PM=be5869a5340dbc2cd20a8b538b78be72.png=3, 当P在M的左边时,CP=5﹣3=2,则P的坐标是(2,4); 当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4). 故P的坐标为:(3,4)或(2,4)或(8,4). 故答案为:(3,4)或(2,4)或(8,4). 3e2f9ebca4ebc4acbbdc0464c7f7714f.png 2.如图,在直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14cm,A(16,0),C(0,2)、若点P、Q分别从C、A同时出发,点P以2cm/s速度由C向B运动,点Q以4cm/s速度由A向O运动,当点Q停止运动时,点P也停止运动,设运动时间为ts(0≤t≤4). (1)求当t为多少时,四边形PQAB为平行四边形; (2)求当t为多少时,直线PQ将梯形OABC分成左右两部分的面积比为1:2,并求出此时直线PQ的解析式. 3047358a6509482df1eb7d09f97ad5ac.png 【解答】解:(1)t秒后,BP=(14﹣2t),AQ=4t 若四边形PQAB为平行四边形,则BP=AQ, 即14﹣2t=4t, 解得:t=8716f7e313a8ea7761fe6b87164a64e7.png.(4分) (2)∵C(0,2),A(16,0) ∴OC=2,OA=16 ∴S梯形OABC2cd4956333a976dd769a168b673567e7.pngfc6907b495d0740de0866c428a5c7fcb.png(cm2) ∵t秒后PC=2t,OQ=16﹣4t, ∴S四边形PQOC655e78e6c8b44fca57aab2d2ad4001f2.png(2t+16﹣4t)×2=16﹣2t, ∵PQ将梯形OABC分成左右两部分面积比为1:2 ∴S四边形PQOCcab39e098d0c2d951f2f66204dc35c00.pngS四边形OABC=10, ∴16﹣2t=10,∴t=3(秒).(7分) ∴t=3秒时,直线PQ将梯形OABC分成左右面积比为1:2两部分, 此时PC=6,OQ=4 ∴Q(4,0)、P(6,2) 设直线PQ解析式为y=kx+b, ∴c731fc57f378950b12de1d344d2977f6.png53f1c98ee3f8075690efc748b5ce9201.png ∴直线PQ解析式为y=x﹣4.(10分) 3.如图,矩形ABCO中,B的坐标为(40b69dcc3adc420f573f5c86ec9e74e3a.png,4),一动点P从O出发,以每秒1个单位的速度,从点O出发沿OA向终点A运动,过点P作直线PF⊥OB,交OB于点F;同时将直线PF以每秒0b69dcc3adc420f573f5c86ec9e74e3a.png个单位向右平移,分别交AB、OB于点E、Q,连接PE,设运动时间为t秒,求t为何值时,PE∥OB. d229baca5d395530467f0d982b930059.png 【解答】解:∵四边形ABCO为矩形, ∴∠AOC=∠OCB=90°, ∵B的坐标为(4c383a5fb871d35b04025af972b6600b7.png,4), ∴OC=4c383a5fb871d35b04025af972b6600b7.png,BC=AO=4, 由勾股定理得:OB=8, ∴∠BOC=30°, 过G作GN⊥EH于N, 由题意得:OP=t,GH=c383a5fb871d35b04025af972b6600b7.pngt, ∵PF∥EH,PF⊥OB, ∴EH⊥OB, ∵PE∥OB∥GN, ∴∠NGC=∠BOC=30°, Rt△GNC中,HN=t,GN=d2152f126d98bc7f46448159b4438f9a.pngt, ∴PE=GN=d2152f126d98bc7f46448159b4438f9a.pngt, Rt△POF中,∵∠POF=90°﹣30°=60°, ∴∠OPF=30°, ∵∠FPE=90°, ∴∠APE=60°, ∴∠AEP=30°, ∴AP=a13ae63cdb655d25a50b36517481f7f2.pngPE=07ccb6a438474edcd250ef87f6c69ff3.pngt, ∵OP=t, 则07ccb6a438474edcd250ef87f6c69ff3.pngt+t=4, t=baf3805aa5240ab8c6ded104159db0d6.png, ∴t为baf3805aa5240ab8c6ded104159db0d6.png秒时,PE∥OB. 5a89d2a1d4e54a90f83429ec30af0abf.png 4.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止、设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到    . 9e6f9839c517f778b608aa18f3e7145c.png 【解答】解:当R在PN上运动时,△MNR的面积不断增大; 当R在QP上运动时,MN一定,高为PN不变,此时面积不变; 当R在QM上运动时,面积不断减小. ∴当x=9时,点R应运动到高不变的结束,即点Q处. 所以当t=2或16﹣2=14时,四边形DEBF是矩形. 5.如图1,正方形ABCD的边长为2厘米,点E从点A开始沿AB边移动到点B,点F从点B开始沿BC边移动到点C,点G从点C开始沿CD边移动到点D,点H从点D开始沿DA边移动到点A、它们同时开始移动,且速度均为0.5厘米/秒.设运动的时间为t(秒) (1)求证:△HAE≌△EBF; (2)设四边形EFGH的面积为S(平方厘米),求S与t之间的函数关系式,并写出自变量t的取值范围; (3)在图2中用描点法画出(2)中函数的图象,并观察图象,答出t为何值时,四边形EFGH的面积最小?最小值是多少?
 t     
 s     
df04de79926a69b4781c12b5dcc3cbc2.png 94d8b1650e4955b460b15e872837e05b.png 【解答】解:(1)t秒时,AE=0.5t,BF=0.5t,DH=0.5t ∴AE=BF=DH(1分) ∵四边形ABCD为正方形 ∴∠A=∠B=90°,AD=AB ∴AH=BE=2﹣0.5t(3分) ∴△HAE≌△EBF(4分) (2)由(1)同理可得Rt△HAE≌Rt△EBF≌Rt△FCG≌Rt△GDH(5分) 8de8cf84d21aca185fdd00b4b6296a9b.png (7分) =c575dd8ce52cf93542334e598c71d5a8.png(8分) 自变量t的取值范围是O≤t≤4(9分) (3)af9ea953fbd57f2057ec4c592c0ef464.png ∴图象的开口向上,对称轴为t=2,顶点坐标为(2,2)
t0 1 2 34
s42.5 2 2.5 4
说明:正确描点画图,图象如右图所示得(3分)(不能按自变量取值范围作图扣1分)2a934c7d245f28586e59cc5ee13154f4.png 答:由图象可知t=2(秒)时,S最小值=2(平方厘米).(14分) 6.如图,已知正方形ABCD与正方形EFGH的边长分别是7b793e32242650e57f6f44b8f5864ec8.png2e48b3778743811134c26e1c1aded657.png,它们的中心O1,O2都在直线l上,AD∥l,EG在直线l上,l与DC相交于点M,ME=7﹣242d603bfc8b3d782041d1146b2b590f3.png,当正方形EFGH沿直线l以每秒1个单位的速度向左平移时,正方形ABCD也绕O1以每秒45°顺时针方向开始旋转,在运动变化过程中,它们的形状和大小都不改变. (1)在开始运动前,O1O2=   ; (2)当两个正方形按照各自的运动方式同时运动3秒时,正方形ABCD停止旋转,这时AE=   ,O1O2=   ; (3)当正方形ABCD停止旋转后,正方形EFGH继续向左平移的时间为x秒,两正方形重叠部分的面积为y,求y与x之间的函数表达式. 4793cf3e143b3986fa48168cecb68b15.png 【解答】解:(1)9. (2)0,6 710daed6d9251f104b2d30cbb636c93d.png (3)当正方形ABCD停止运动后,正方形EFGH继续向左平移时,与正方形ABCD重叠部分的形状也是正方形. 重叠部分的面积y与x之间的函数关系应分四种情况: ①如图1,当0≤x<4时, ∵EA=x, ∴y与x之间的函数关系式为y=f7d1fbbd7a3a453da7e60face15a41bb.png. ②如图2,当4≤x<8时,y与x之间的函数关系式为y=(24eba32a5702f0f5f420e970eaa255bbd.png)2=8. ③如图3,当8≤x<12时, ∵CG=12﹣x, ∴y与x之间的函数关系式为y=fff4af7f7b1c3974c7ef8e49ed0074c0.png47af73b8cca1e378b95fbab991ec03d5.pngx2﹣12x+72. ④当x≥12时,y与x之间的函数关系式为y=0. 7.将一矩形纸片OABC放在平面直角坐标系中,O为顶点,点A在x轴上,点C在y轴上,OA=10,OC=8. (1)如右上图,在OC边上取一点D,将△BCD沿BD折叠,使点C恰好落在OA边上,记作点E. ①求点E的坐标及折痕BD的长; ②在x轴上取两点M,N(点M在点N的左侧),且MN=4.5,求使四边形BDMN的周长最短的点M和点N的坐标; (2)如右下图,在OC,BC边上分别取点F,G,将△GCF沿GF折叠,使点C恰好落在OA边上,记作点H.设OH=x,四边形OHGC的面积为S,求S与x之间的函数关系式,并写出自变量x的取值范围. 787fe20f3b8978565485b97313963990.png 【解答】解:(1)①∵四边形OABC为矩形, ∴BC=OA=10,AB=OC=8, ∵△BCD沿BD折叠,使点C恰好落在OA边E点上, ∴BC=BE=10,DC=DE, 在Rt△ABE中,BE=10,AB=8, ∴AE=6, ∴OE=10﹣6=4, ∴E点坐标为(4,0); 在Rt△ODE中,设DE=x,则OD=OC﹣DC=OC﹣DE=8﹣x, ∴x2=42+(8﹣x)2,解得x=5, 在Rt△BDE中, BD=221b547943b673dbf64939dc8feae9af.png=55214d0254efae8bbe2e8fdd28f64cbb6.png; ②以D、M、N为顶点作平行四边形DMND′,作出点B关于x轴对称点B′,如图: ∴B′的坐标为(10,﹣8),DD′=MN=4.5, ∴D′的坐标为(4.5,3), 设直线D′B′的解析式为y=kx+b, 把B′(10,﹣8),D′(4.5,3)代入得 10k+b=﹣8,4.5k+b=3, 解得k=﹣2,b=12, ∴直线D′B′的解析式为y=﹣2x+12, 令y=0,得﹣2x+12=0,解得x=6, ∴M(1.5,0);N(6,0). (2)过点H作HM⊥BC于M,则MG=HG﹣x, ∵△GCF沿GF折叠得到△GHF, ∴HG=CG,故MG可表示为CG﹣x, 在Rt△HMG中,HG2=MG2+MH2,即HG2=(CG﹣x)2+64, 解得:CG=8f77aed600a71e46cac4ffdddc786961.png, ∴SOHGC8ff98b60ec4797b605de571d73115c03.png(CG+OH)•OC=750629fda02d8f5263a14726c7e5104b.png,即y=750629fda02d8f5263a14726c7e5104b.png, 点F与点O重合点G与点B重合、点F与点O重合分别是点F的两个极限, 1、点G与点B重合时,由①的结论可得,此时OH=4, 2、点F与点O重合时,OH=8, 综上可得:y=750629fda02d8f5263a14726c7e5104b.png,(4≤x≤8). 41e14c159070a78de104bb5bd7d36307.png 71b6ab050fc77fc60bcd9438788b1d04.png 8.如图,在直角梯形ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点M从点D出发,以1cm/s的速度向点C运动,点N从点B同时出发,以2cm/s的速度向点A运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形ADMN的面积y(cm2)与两动点运动的时间t(s)的函数图象大致是(  ) f8a06750e04859c150080c4b4b77abdc.png A.90f12e54845b605a395a098df71d0b89.png       B.c9af5fe384a1a5a648a7cb8fe86e6dcf.png       C.698bf31caf8d9a24d0a9a8b0bca91d47.png       D.acde9711bcbb327f954d2503efb33fb8.png 【解答】解:因为在直角梯形ABCD中,DC∥AB,∠A=90°, 所以四边形ANMD也是直角梯形,因此它的面积为ebfa1f453e931107304d8e24faee8c4f.png(DM+AN)×AD,因为DM=t,AN=28﹣2t,AD=4; 所以四边形AMND的面积y=6f5c356619f810014d3755a52561ecd5.png(t+28﹣2t)×4=﹣2t+56. 因为当其中一个动点到达端点停止运动时,另一个动点也随之停止运动; 所以当N点到达A点时,2t=28,t=14; 所以自变量t的取值范围是0<t<14. 故选:D. 9.如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=a947d40638b022fbb5450597475240fa.png,∠C=45°,点P是BC边上一动点,设PB的长为x. (1)当x的值为    时,以点P、A、D、E为顶点的四边形为直角梯形; (2)当x的值为    时,以点P、A、D、E为顶点的四边形为平行四边形; (3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由. 6fb99f791f5685e7b190e3f3cec89683.png 【解答】解:(1)如图,分别过A、D作AM⊥BC于M,DN⊥CB于N, 则四边形AMND是矩形, ∴AM=DN,AD=MN=5, 而CD=74143474e07e05cd47eb31ec7ba3f50a.png,∠C=45°, ∴DN=CN=CD•sin∠C=45c17b822fe49fe1a87963d43f54f9cef.png×11d497f6fff1864faf77b703513c0ffd.png=4=AM, ∴BM=CB﹣CN﹣MN=3, 若点P、A、D、E为顶点的四边形为直角梯形, 则∠APC=90°或∠DEB=90°, 当∠APC=90°时, ∴P与M重合, ∴BP=BM=3; 当∠DPB=90°时,P与N重合, ∴BP=BN=8; 故当x的值为3或8时,以点P、A、D、E为顶点的四边形为直角梯形; (2)若以点P、A、D、E为顶点的四边形为平行四边形,那么AD=PE, 有两种情况:①当P在E的左边, ∵E是BC的中点, ∴BE=6, ∴BP=BE﹣PE=6﹣5=1; ②当P在E的右边, BP=BE+PE=6+5=11; 故当x的值为1或11时,以点P、A、D、E为顶点的四边形为平行四边形; (3)由(2)知,①当BP=1时,此时CN=DN=4,NE=6﹣4=2, ∴DE=e9e36aafda47a8e8afc9f4ed10a7cdc2.pngde0a379c6349343ddbb4e478575b74a1.png=2463baa2be2112b860a06288f982edd67.png≠AD,故不能构成菱形. ②当BP′=11时,以点P′、A、D、E为顶点的四边形是平行四边形 ∴EP′=AD=5, 过D作DN⊥BC于N, ∵CD=7af7b15453005adfe1d0002a2c6fcd76.png,∠C=45°, 则DN=CN=4, ∴NP′=BP′﹣BN=BP′﹣(BC﹣CN)=11﹣12+4=3. ∴DP′=e7bf8fc2fd0e10d40162bc38b2ec800e.pngfc417d348802cdc5f039e70985fb34b7.png=5, ∴EP′=DP′, 故此时▱P′DAE是菱形. 即以点P、A、D、E为顶点的四边形能构成菱形; fbdbd4071e424af5d109fa8717562870.png 0e0b64b316907c1472c8c3d66ba2c594.png 10.已知:等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运动的时间为t秒. (1)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形并求出该矩形的面积; (2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t,求四边形MNQP的面积S随运动时间t变化的函数关系式,并写出自变量t的取值范围. 983c607211c91db7b4568bc27a2c637a.png 【解答】解:(1)过点C作CD⊥AB,垂足为D,则AD=2, 当MN运动到被CD垂直平分时,四边形MNQP是矩形, 即当AM=610782e72b1c4e24c31f56b2391b8225.png时,四边形MNQP是矩形, ∴t=610782e72b1c4e24c31f56b2391b8225.png秒时,四边形MNQP是矩形, ∵PM=AMtan60°=965a8e19d4c3fe38adaeacfe60c8f076.png, PQ=MN=AB﹣2AM=4﹣3=1, ∴S四边形MNQP=PM•PQ=965a8e19d4c3fe38adaeacfe60c8f076.png; (2)①当0<t≤1时,点P、Q都在AC上,并且四边形PMNQ为直角梯形, 在Rt△AMP中, ∵∠A=60°,AM=t,tan∠A=0d280a700e2836ce7285dfd2ead9b353.png, ∴PM=tan60°×AM=616b2e409b130a9911bb5dea22fffa36.pngAM=616b2e409b130a9911bb5dea22fffa36.pngt, 在Rt△ANQ中, 而AN=AM+MN=t+1, ∴QN=616b2e409b130a9911bb5dea22fffa36.pngAN=616b2e409b130a9911bb5dea22fffa36.png(t+1), ∴S四边形MNQPa07de5f774c791b33e6c8d51ffe104ba.png(PM+QN)MN=a07de5f774c791b33e6c8d51ffe104ba.png[616b2e409b130a9911bb5dea22fffa36.pngt+616b2e409b130a9911bb5dea22fffa36.png(t+1)]=616b2e409b130a9911bb5dea22fffa36.pngt+9866cc031cf311a650c7b62b1f4d481c.png; ②当1<t<2时, 点P在AC上,点Q在BC上, PM=616b2e409b130a9911bb5dea22fffa36.pngt, BN=AB﹣AM﹣MN=4﹣1﹣t=3﹣t, 在Rt△BNQ中, QN=616b2e409b130a9911bb5dea22fffa36.pngBN=616b2e409b130a9911bb5dea22fffa36.png(3﹣t), ∴S四边形MNQPb3fa51a495c7f6bf66c42ed2fe62e345.png(PM+QN)MN=b3fa51a495c7f6bf66c42ed2fe62e345.png[b7fcc059ed539b201335cddcce4899f4.pngt+b7fcc059ed539b201335cddcce4899f4.png(3﹣t)]×1=3e5a8c7d7ee6e1ab273466b285344d4f.pngb7fcc059ed539b201335cddcce4899f4.png; ③当2≤t<3时,点P、Q都在BC上, BM=4﹣t,BN=3﹣t, ∴PM=b7fcc059ed539b201335cddcce4899f4.pngBM=b7fcc059ed539b201335cddcce4899f4.png(4﹣t),QN=b7fcc059ed539b201335cddcce4899f4.pngBN=b7fcc059ed539b201335cddcce4899f4.png(3﹣t), ∴S四边形MNQPb3fa51a495c7f6bf66c42ed2fe62e345.png(PM+QN)MN=b3fa51a495c7f6bf66c42ed2fe62e345.png[b7fcc059ed539b201335cddcce4899f4.png(3﹣t)+b7fcc059ed539b201335cddcce4899f4.png(4﹣t)]=af4170983fafe9bf6294e66d680d1d5f.png3950500fdf79f7391dbc08cc57be5cec.pngt.     综上所述:当0<t≤1时,S四边形MNQP3950500fdf79f7391dbc08cc57be5cec.pngt+817f2db0cf47fab9b57aa100fe549c4e.png;当1<t<2时,S四边形MNQP34d7272f511debbc1931fbf7579a4a6d.png3950500fdf79f7391dbc08cc57be5cec.png; 当2≤t<3时,S四边形MNQPaf4170983fafe9bf6294e66d680d1d5f.png3950500fdf79f7391dbc08cc57be5cec.pngt. (10分) 85a9d35d97a3d012443610e3573e0a49.png67ac463b0d3f2fb9e5de1a6dc72c324e.png48ed634e77fdd7929cb8edcc9213a996.png 13e8fcb2b02627d59e6f9979c4e96073.png 11.如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x轴正方向作匀速运动.同时点P从A点出发以每秒1个单位长度沿A﹣B﹣C﹣D的路线作匀速运动.当P点运动到D点时停止运动,矩形ABCD也随之停止运动. (1)求P点从A点运动到D点所需的时间; (2)设P点运动时间为t(秒). ①当t=5时,求出点P的坐标; ②若△OAP的面积为s,试求出s与t之间的函数关系式(并写出相应的自变量t的取值范围). a2530f20b8454c9aee751043f730fe25.png 【解答】解:(1)P点从A点运动到D点所需的时间=(3+5+3)÷1=11(秒) (2)①当t=5时,P点从A点运动到BC上, 过点P作PE⊥AD于点E. 此时A点到E点的距离=10,AB+BP=5, ∴BP=2 则PE=AB=3,AE=BP=2 ∴OE=OA+AE=10+2=12 ∴点P的坐标为(12,3). ②分三种情况: i.0<t≤3时,点P在AB上运动,此时OA=2t,AP=t ∴s=e97e1a635324708d2ec29a2a3f82dd71.png×2t×t=t2 ii.3<t≤8时,点P在BC上运动,此时OA=2t ∴s=e97e1a635324708d2ec29a2a3f82dd71.png×2t×3=3t iii.8<t<11时,点P在CD上运动,此时OA=2t,AB+BC+CP=t ∴DP=(AB+BC+CD)﹣(AB+BC+CP)=11﹣t ∴s=e97e1a635324708d2ec29a2a3f82dd71.png×2t×(11﹣t)=﹣t2+11t 综上所述,s与t之间的函数关系式是: 当0<t≤3时,s=t2; 当3<t≤8时,s=3t; 当8<t<11时,s=﹣t2+11t. 096043e21a6aa0b30b3d85aaf649b0a4.png 12.如图,在矩形OABC中,已知A,C两点的坐标分别为A(4,0),C(0,2),D为OA的中点.设点P是∠AOC平分线上的一个动点(不与点O重合). (1)试证明:无论点P运动到何处,PC总与PD相等; (2)当点P运动到与点B的距离最小时,求P的坐标; (3)已知E(1,﹣1),当点P运动到何处时,△PDE的周长最小?求出此时点P的坐标和△PDE的周长. 086b3e92f95db5432e6cf4837688b59c.png 【解答】(1)证明:∵A(4,0),C(0,2),D为OA的中点, ∴D点坐标为(2,0), ∴OC=OD, 又∵点P是∠AOC平分线上的一个动点(不与点O重合), ∴∠COP=∠DOP=45°, ∴△POC≌△POD, ∴PC=PD, 即无论点P运动到何处,PC总与PD相等; (2)解:过B作BP垂直∠AOC的平分线于P点,过P点作PN⊥x轴于N,交BC于M点,OP交BC于H点,如图, ∵OP平分∠AOC, ∴∠COP=∠NOP=45°, ∴△PHM、△COH和△PON都是等腰直角三角形, ∴△PHB是等腰直角三角形, ∴PM垂直平分BH, ∴CH=CO=2, ∴BH=4﹣2=2, ∴PM=a98f7df2fc783ab15b8b68c2ff1c3efa.pngBH=1, ∴ON=PN=1+2=3, ∴P点坐标为(3,3); (3)解:连CE交∠AOC的平分线于P点,连PD、CD,ED,如图, ∵OC=OD,OP平分直角AOC, ∴OP垂直平分CD, ∴PC=PD, ∴PD+PE=PC+PE=CE, 此时△PDE的周长最小, 设直线CE的解析式为y=kx+b(k≠0), 把C(0,2)、E(1,﹣1)分别代入得,b=2,k+b=﹣1,解得k=﹣3,b=2, ∴直线CE的解析式为y=﹣3x+2, 而P点的横纵坐标相等,设P(a,a),把P点坐标代入y=﹣3x+2得,a=﹣3a+2,解得a=a98f7df2fc783ab15b8b68c2ff1c3efa.png, ∴P点坐标为(0d7a741299dd783292e47f9cf2dc4136.png0d7a741299dd783292e47f9cf2dc4136.png), ∵CE=26a1d478cda08fb50bdac6163c85fd74.png5f8e27fe52197545712b8d59f047fcc5.png,DE=cdca55873a2d6aaa65b2b085adacac81.pngd75da1c9a4aa59f31de5190dc63fbf21.png, ∴此时△PDE的周长=d75da1c9a4aa59f31de5190dc63fbf21.png+5f8e27fe52197545712b8d59f047fcc5.pnge0c89ebb8f8e5f1a0c6de5f11f5101a0.png 230ad83cf04655c0bb0e5ffea4c70809.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值