二元函数可导与可微的关系_多元函数中可微与可导的直观区别是什么?

本文深入探讨了多元函数中的偏微分、偏导数和全微分的概念。偏微分是在固定其他变量时,某一变量的变化趋势;偏导数是偏微分的斜率。全微分则要求在所有方向上都有微分存在且共面。全微分的存在意味着偏导数和偏微分存在,但反之不成立。通过实例展示了全微分不存在的情况。
摘要由CSDN通过智能技术生成

在多元的情况下,可微可导的关系要比在一元情况下复杂,但是只是要复杂一些,如果我们从一元开始去理解,你会发现并不困难。

这篇文章主要阐述以下三个概念:偏微分

偏导数

全微分

全导数这里暂时不讲,看名字好像和全微分关系很大,其实和“方向导数”的关系更大,所以留到讲“方向导数”的时候再一起来说。

1 偏微分

在一元函数中的微分就是函数的切线:

关于微分就是切线,我写的很多文章(比如我最近的 如何通俗解释全微分? )都希望大家可以理解这一点,虽然要严格讲清楚需要微分几何、流型的知识,但是我认为掌握了这一点对于我们学习微积分很有帮助。

我们发挥一下空间想象力,把它从平面中拽出来,进入三维空间:

之前是平面曲线,现在是空间曲线。切线仍然是切线,微分仍然是微分。

我们再想象一下,其实这个空间曲线是

这个空间平面与

这个空间曲面的交线:

我们就把这个切线称为

对于

的偏微分。为什么是对于

的呢?因为这是

的交线,在这条线上无论点怎么变化,都要满足

,即

是常数不会变化。

你来玩玩下面这个互动操作就知道了,点在线上变化只会改变

理解了这个,就可以举一反三,所有

(

为常数)的平面与

的交线都是满足刚才说的特点:

这些交线上的点的切线都是

关于

的偏微分。

当然,如果

(

为常数)得到的交线,这些交线的切线就是

关于

的偏微分。

总结,偏微分就是:固定

,变换

得到的就是

关于

的偏微分

固定

,变换

得到的就是

关于

的偏微分

2 偏导数

偏微分理解了偏导数就好理解了,就是偏微分的斜率,现在你应该可以明白为什么我们在求

对于

的偏导数的时候,我们把

当作常数来看待了吧。

只是有一点需要说明,在三维空间中角度可以有不同的定义,计算斜率的时候我们是看下面这个

角:

总结,偏导数就是偏微分的斜率。

3 全微分

其实,不光是

或者

这样的平面可以和

相交得到交线,所有和

平面垂直的平面都相交得到交线,这些交线都会有切线(微分)。

这个平面相交得到的交线:

这个平面也可以:

总之,应该是360°无死角,自己动手试试:

如果这些切线都存在,并且这些切线(无数条)还都在同一个平面上(平面不是曲面),那么得到的这个平面就是全微分(也叫做切平面,或者说切空间):

总结,全微分就是:360°微分都存在

并且这些微分要共面,得到的就是全微分

4 全微分与偏导数、偏微分的关系

根据全微分的定义,如果全微分存在,那么偏导数、偏微分一定存在。

但是反过来不一定成立,即偏导数、偏微分存在,全微分不一定存在。因为偏导、偏微分只是

或者

方向的导数、微分,而全微分要求的是360°无死角。

举个例子,看这个 :

我们考察这个函数在

点的全微分和偏微分的情况。

的交线是:

平面与曲面所交曲线与

轴重合:

点的微分(切线)很明显,就是交线(

轴)自身,因此关于

的偏微分存在。

但是

的交线是:

点形成了一个尖点,很显然此时的微分不存在:

因此,全微分不存在。

总结,全微分与偏导数、偏微分的关系:全微分存在偏导数、偏微分一定存在

偏导数、偏微分存在全微分不一定存在

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值