01
—
引言
电动汽车驱动电机在负载变化时,将形成阶跃型的扭矩激励。这种阶跃激励会使电机转速发生波动,导致传动系的NVH问题,相关原理和解决方案有多篇文献可参考,本文不再涉及此方面内容。扭矩阶跃变化还会影响到动力总成悬置系统,电动汽车在设计悬置系统时必须对该因素有所考虑,采用与燃油车不同的设计思路,电动车还需要进行扭矩梯度设定,合理控制扭矩响应时间。本文将对该问题展开讨论。
阶跃型扭矩激励的动载系数通常大于1.0,会使动力总成发生较大的位移,可能撞击到周边部件。另外悬置软垫、悬置支架以及悬置支架与动力总成的连接点会产生较大幅度的应力和应变。反复冲击作用下,损伤不断累积,最终结构可能发生失效。
阶跃型扭矩冲击不仅会导致悬置系统结构强度耐久问题,对于整车NVH性能而言更是高等级的风险项。动力总成与周边件撞击和悬置软垫被突然压死都会发出异响;动力总成的大幅度位移会导致整车明显抖动;且动力总成并不是运动到某个位置就马上静止,而是在平衡位置附近持续做较大幅度的往复振动,并通过悬置系统将振动耦合到车身。
02
—
阶跃型冲击的数学描述
电机在负载变化时的扭矩激励,可以简化为图1所示的斜线阶跃型激励。其中t0为斜线段时间,即扭矩调整时间。
图1 斜线阶跃型激励
一无阻尼单自由度系统,对于斜线阶跃型激励,其响应的解为,
其中fc为静力响应解,ωn为系统的固有圆频率。
由公式(1)可知,t≥t0时,系统响应为静力响应叠加一个余弦自由振动。自由振动与静力响应的幅值之比为
如果扭矩变化时间非常短,即t0≈0,则斜线阶跃型激励退化为数学上的阶跃函数,即理想的阶跃激励,如图2。
图2 阶跃函数
单自由度无阻尼系统对于图2阶跃函数的响应如下式