# 控制笔记(2) 一、二阶系统时域响应(下)

简单记录重点,推导省略
引用:
https://zhuanlan.zhihu.com/p/406492070
控制之美

二阶系统时域响应

RLC电路。弹簧阻尼系统。实际工程应用中,大部分关于运动控制的系统,简化后的闭环传递函数都可以近似为二阶系统。

系统传递函数

G ( s ) = ω n 2 s 2 + 2 ζ ω n + ω n 2 G\left( s \right) = \frac{{\omega _n^2}}{{{s^2} + 2\zeta {\omega _n} + \omega _n^2}} G(s)=s2+2ζωn+ωn2ωn2
ω n 2 \omega _n^2 ωn2:固有频率。 ζ \zeta ζ:阻尼比。

单位冲激响应

零初始状态下,二阶系统的单位冲激响应
C ( s ) = G ( s ) ⋅ R ( s ) = ω n 2 s 2 + 2 ζ ω n + ω n 2 C\left( s \right) = G\left( s \right) \cdot R\left( s \right) = \frac{{\omega _n^2}}{{{s^2} + 2\zeta {\omega _n} + \omega _n^2}} C(s)=G(s)R(s)=s2+2ζωn+ωn2ωn2
p 1 , 2 = − ζ ω n ± ω n ζ 2 − 1 {p_{1,2}} = - \zeta {\omega _n} \pm {\omega _n}\sqrt {{\zeta ^2} - 1} p1,2=ζωn±ωnζ21
在这里插入图片描述

单位阶跃响应

引入了一个零极点,因式分解必有一个积分环节,反拉氏变换之后为常数。
ζ < 0 \zeta < 0 ζ<0,正实部极点,不稳定,发散

ζ = 0 \zeta = 0 ζ=0,纯虚极点,临界稳定,振荡
C ( s ) = 1 s − s s 2 + ω n 2 C ( t ) = 1 − cos ⁡ ω n t \begin{aligned}C(s)&=\frac{1}{s}-\frac{s}{s^2+\omega_n^2}\\C(t)&=1-\cos\omega_nt\end{aligned} C(s)C(t)=s1s2+ωn2s=1cosωnt
0 < ζ < 1 0 < \zeta < 1 0<ζ<1,欠阻尼,稳定,收敛
C ( s ) = 1 s ⋅ ω n 2 s 2 + 2 ζ ω n s + ω n 2 = 1 s − s + 2 ζ ω n s 2 + 2 ζ ω n s + ω n 2 = 1 s − s + 2 ζ ω n s 2 + 2 ζ ω n s + ( ζ ω n ) 2 − ( ζ ω n ) 2 + ω n 2 = 1 s − s + ζ ω n + ζ ω n ( s + ζ ω n ) 2 + ( 1 − ζ 2 ω n ) 2 = 1 s − s + ζ ω n ( s + ζ ω n ) 2 + ( 1 − ζ 2 ω n ) 2 − ζ ω n ( s + ζ ω n ) 2 + ( 1 − ζ 2 ω n 2 ) 2 \begin{aligned} C(s)& =\frac1s\cdot\frac{\omega_n^2}{s^2+2\zeta\omega_ns+\omega_n^2}=\frac1s-\frac{s+2\zeta\omega_n}{s^2+2\zeta\omega_ns+\omega_n^2} \\ &=\frac1s-\frac{s+2\zeta\omega_n}{s^2+2\zeta\omega_ns+\left(\zeta\omega_n\right)^2-\left(\zeta\omega_n\right)^2+\omega_n^2} \\ &=\frac1s-\frac{s+\zeta\omega_n+\zeta\omega_n}{\left(s+\zeta\omega_n\right)^2+\left(\sqrt{1-\zeta^2}\omega_n\right)^2} \\ &=\frac1s-\frac{s+\zeta\omega_n}{\left(s+\zeta\omega_n\right)^2+\left(\sqrt{1-\zeta^2}\omega_n\right)^2}-\frac{\zeta\omega_n}{\left(s+\zeta\omega_n\right)^2+\left(\sqrt{1-\zeta^2}\omega_n^2\right)^2} \end{aligned} C(s)=s1s2+2ζωns+ωn2ωn2=s1s2+2ζωns+ωn2s+2ζωn=s1s2+2ζωns+(ζωn)2(ζωn)2+ωn2s+2ζωn=s1(s+ζωn)2+(1ζ2 ωn)2s+ζωn+ζωn=s1(s+ζωn)2+(1ζ2 ωn)2s+ζωn(s+ζωn)2+(1ζ2 ωn2)2ζωn
C ( t ) = 1 − e − ζ ω n t [ cos ⁡ ( 1 − ζ 2 ω n t ) + ζ 1 − ζ 2 sin ⁡ ( 1 − ζ 2 ω n t ) ] = 1 − 1 1 − ζ 2 e − ζ ω n t sin ⁡ ( 1 − ζ 2 ω n t + t g − 1 1 − ζ 2 ζ ) = 1 − 1 1 − ζ 2 e − σ t sin ⁡ ( ω d t + t g − 1 1 − ζ 2 ζ ) \begin{aligned} C(t)& =1-e^{-\zeta\omega_nt}\left[\cos\left(\sqrt{1-\zeta^2}\omega_nt\right)+\frac\zeta{\sqrt{1-\zeta^2}}{\sin\left(\sqrt{1-\zeta^2}\omega_nt\right)}\right] \\ &=1-\frac{1}{\sqrt{1-\zeta^{2}}}e^{-\zeta\omega_{n}t}\sin\left(\sqrt{1-\zeta^{2}}\omega_{n}t+\mathrm{tg}^{-1}\frac{\sqrt{1-\zeta^{2}}}{\zeta}\right) \\ &=1-\frac{1}{\sqrt{1-\zeta^{2}}}e^{-\sigma t}\sin\left(\omega_{d}t+\mathrm{tg}^{-1}\frac{\sqrt{1-\zeta^{2}}}{\zeta}\right) \end{aligned} C(t)=1eζωnt[cos(1ζ2 ωnt)+1ζ2 ζsin(1ζ2 ωnt)]=11ζ2 1eζωntsin(1ζ2 ωnt+tg1ζ1ζ2 )=11ζ2 1eσtsin(ωdt+tg1ζ1ζ2 )
$ \zeta >= 1$,过阻尼,稳定,收敛,无超调
C ( s ) = 1 s ⋅ ω n 2 s 2 + 2 ζ ω n s + ω n 2 = 1 s − s + 2 ζ ω n s 2 + 2 ζ ω n s + ω n 2 = 1 s − s + 2 ζ ω n ( s + ω n ζ − ω n ζ 2 − 1 ) ( s + ω n ζ + ω n ζ 2 − 1 ) = 1 s − ζ 2 − 1 + ζ 2 ζ 2 − 1 s + ω n ζ − ω n ζ 2 − 1 − ζ 2 − 1 − ζ 2 ζ 2 − 1 s + ω n ζ + ω n ζ 2 − 1 \begin{aligned} C(s)& =\frac1s\cdot\frac{\omega_n^2}{s^2+2\zeta\omega_ns+\omega_n^2}=\frac1s-\frac{s+2\zeta\omega_n}{s^2+2\zeta\omega_ns+\omega_n^2} \\ &=\frac1s-\frac{s+2\zeta\omega_n}{(s+\omega_n\zeta-\omega_n\sqrt{\zeta^2-1})(s+\omega_n\zeta+\omega_n\sqrt{\zeta^2-1})} \\ &=\frac1s-\frac{\frac{\sqrt{\zeta^2-1}+\zeta}{2\sqrt{\zeta^2-1}}}{s+\omega_n\zeta-\omega_n\sqrt{\zeta^2-1}}-\frac{\frac{\sqrt{\zeta^2-1}-\zeta}{2\sqrt{\zeta^2-1}}}{s+\omega_n\zeta+\omega_n\sqrt{\zeta^2-1}} \end{aligned} C(s)=s1s2+2ζωns+ωn2ωn2=s1s2+2ζωns+ωn2s+2ζωn=s1(s+ωnζωnζ21 )(s+ωnζ+ωnζ21 )s+2ζωn=s1s+ωnζωnζ21 2ζ21 ζ21 +ζs+ωnζ+ωnζ21 2ζ21 ζ21 ζ
C ( t ) = 1 − ζ 2 − 1 + ζ 2 ζ 2 − 1 e p 1 t − ζ 2 − 1 − ζ 2 ζ 2 − 1 e p 2 t C(t)=1-\frac{\sqrt{\zeta^2-1}+\zeta}{2\sqrt{\zeta^2-1}}e^{p_1t}-\frac{\sqrt{\zeta^2-1}-\zeta}{2\sqrt{\zeta^2-1}}e^{p_2t} C(t)=12ζ21 ζ21 +ζep1t2ζ21 ζ21 ζep2t
可以从时域响应函数分析性能指标

在这里插入图片描述
C ( s ) = ω n 2 [ A s − ζ ω n + ω n ζ 2 − 1 + B s − ζ ω n − ω n ζ 2 − 1 ] C\left( s \right) = \omega _n^2\left[ {\frac{A}{{s - \zeta {\omega _n} + {\omega _n}\sqrt {{\zeta ^2} - 1} }} + \frac{B}{{s - \zeta {\omega _n} - {\omega _n}\sqrt {{\zeta ^2} - 1} }}} \right] C(s)=ωn2[sζωn+ωnζ21 A+sζωnωnζ21 B]

C ( s ) = ω n 2 [ A s − ζ ω n + ω n 1 − ζ 2 j + B s − ζ ω n − ω n 1 − ζ 2 j ] = j ω n 2 1 − ζ 2 s − ζ ω n + ω n 1 − ζ 2 j + − j ω n 2 1 − ζ 2 n s − ζ ω n − ω n 1 − ζ 2 j C\left( s \right) = \omega _n^2\left[ {\frac{A}{{s - \zeta {\omega _n} + {\omega _n}\sqrt {1 - {\zeta ^2}} j}} + \frac{B}{{s - \zeta {\omega _n} - {\omega _n}\sqrt {1 - {\zeta ^2}} j}}} \right] = \frac{{\frac{{j{\omega _n}}}{{2\sqrt {1 - {\zeta ^2}} }}}}{{s - \zeta {\omega _n} + {\omega _n}\sqrt {1 - {\zeta ^2}} j}} + \frac{{ - {{\frac{{j{\omega _n}}}{{2\sqrt {1 - {\zeta ^2}} }}}_n}}}{{s - \zeta {\omega _n} - {\omega _n}\sqrt {1 - {\zeta ^2}} j}} C(s)=ωn2[sζωn+ωn1ζ2 jA+sζωnωn1ζ2 jB]=sζωn+ωn1ζ2 j21ζ2 jωn+sζωnωn1ζ2 j21ζ2 jωnn
ζ = 0 \zeta = 0 ζ=0
C ( s ) = 0.5 j ω n s + j ω n + − 0.5 j ω n s − j ω n , ζ = 0 C\left( s \right) = \frac{{0.5j{\omega _n}}}{{s + j{\omega _n}}} + \frac{{ - 0.5j{\omega _n}}}{{s - j{\omega _n}}},\zeta = 0 C(s)=s+jωn0.5jωn+sjωn0.5jωn,ζ=0
在这里插入图片描述

性能指标

T s {T_s} Ts:系统调节时间/稳定时间 T s {T_s} Ts取决于误差带的选取。DR_CAN书中所取的误差带为0.02。 系统稳定在误差带内的时间。
T r {T_r} Tr:上升时间,指系统第一次达到稳定点的时间。
M p {M_p} Mp:最大超调量。(峰值-稳态值)/稳态值*100%

  • 25
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值