从零体检一个魔塔社区模型(modelscope)最简单demo

从社区拿一个模型,比如以下这个链接 https://www.modelscope.cn/models/iic/cv_mobilenet-v2_bad-image-detecting

它的代码样例如下

from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.outputs import OutputKeys

img = 'https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/dogs.jpg'
test_pipeline = pipeline(Tasks.bad_image_detecting, 'damo/cv_mobilenet-v2_bad-image-detecting')
result = test_pipeline(img)
print(result)

怎么在自己电脑环境中运行起来?

前期准备

首先安装一个Python环境,选最新版本安装就好了,然后把Python配置到环境变量。

按照官方文档的说法,需要安装一个conda环境,这里建议是安装一个miniconda版本,链接 Miniconda — Anaconda documentation

如果想要在cmd命令行使用,还可以将安装路径miniconda3\condabin配置到环境变量

最后在控制台输入 conda -V,能顺利显示版本号说明成功了。

C:\Users\Admin>conda -V
conda 24.5.0
创建一个conda环境

注意官方文档推荐使用python版本是3.8(如果提示没有权限Permission denied,那么使用管理员身份运行)

conda create --name modelscope python==3.8

通过 conda info -e检查是否存在modelscope环境

C:\Windows\System32>conda info -e
# conda environments:
#
base                     C:\ProgramData\miniconda3
modelscope               C:\ProgramData\miniconda3\envs\modelscope

在PyCharm使用conda环境

添加Python解释器 - Virtualenv环境,选择miniconda3\envs\modelscope下的Python.exe

其次配置Conda环境,选择现有环境modelscope

如果以上步骤都顺利,此时在PyCharm终端看到的Python环境应该是

(modelscope) PS E:\GitHub\blogsCodeSimple\新建文件夹\modelscopeDemo> python   
Python 3.8.0 (default, Nov  6 2019, 16:00:02) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.

然后拉取 modelscope[framework]opencv-python

点击运行即可(如果提示没有权限Permission denied,那么使用管理员身份运行PyCharm)

最后输出如下

{'scores': [1.0, 2.5564614e-10, 3.6810602e-13], 'labels': ['正常', '绿屏', '花屏']}

 

原创作者: yinghualuowu 转载于: https://www.cnblogs.com/yinghualuowu/p/18342418
<think>好的,我现在需要帮助用户了解如何部署魔塔ModelScope社区模型。首先,我需要回忆一下魔塔社区的基本信息。ModelScope是阿里巴巴推出的一个开源模型平台,提供各种预训练模型和工具,方便开发者使用和部署。用户可能已经知道一些基本概念,但需要具体的部署步骤。 接下来,我应该分解部署流程。通常,部署一个模型包括环境准备、模型选择、安装依赖、下载模型、编写推理代码以及部署服务等步骤。需要确保每个步骤都清晰,并且考虑到用户可能遇到的常见问题,比如环境配置错误或依赖冲突。 然后,我需要检查是否有引用内容需要整合。用户提供的参考引用[^1]提到大模型应用的学习和落地,这可能意味着用户希望实际应用模型,而不仅仅是理论部署。因此,在回答中可能需要强调实际应用中的注意事项,比如性能优化或服务监控。 还要注意格式要求,比如行内数学公式用$...$,独立公式用$$...$$,但在这个问题中可能用不到太多数学公式,不过如果有参数设置或数学表达式,要正确应用。同时,需要用中文回答,结构清晰,分步骤说明。 用户可能的问题包括环境配置的具体命令、如何选择适合的模型、如何处理依赖问题、推理代码示例以及部署后的测试方法。需要确保每个步骤都有对应的解释,并且提供示例代码,比如Python的调用示例。 另外,需要生成相关问题,可能涉及性能优化、模型微调、常见错误处理等,这些都需要在最后部分列出,帮助用户进一步探索。 最后,要确保回答真实可靠,可能需要参考ModelScope的官方文档,确保步骤正确无误。如果有不确定的地方,比如特定模型的依赖版本,应该建议用户查阅官方资料或社区支持。</think>### 魔塔ModelScope社区模型部署指南 #### 一、环境准备 1. **Python环境**:建议使用 Python 3.8+,通过虚拟环境隔离依赖: ```bash conda create -n modelscope python=3.8 conda activate modelscope ``` 2. **安装ModelScope核心库**: ```bash pip install modelscope ``` 若需GPU支持,需提前安装对应版本的PyTorch/CUDA。 #### 二、模型选择与下载 1. **访问ModelScope Hub**: 在[官网](https://modelscope.cn/models)搜索目标模型(如`达摩院语音识别模型`),复制模型ID(如`damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch`)。 2. **代码调用下载**: ```python from modelscope import snapshot_download model_dir = snapshot_download("damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch") ``` #### 三、模型推理示例 ```python from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks # 语音识别示例 asr_pipeline = pipeline(task=Tasks.auto_speech_recognition, model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch") result = asr_pipeline(audio_in="test.wav") print(result["text"]) ``` #### 四、服务化部署(以API服务为例) 1. **安装FastAPI**: ```bash pip install fastapi uvicorn ``` 2. **编写API服务**: ```python from fastapi import FastAPI from modelscope.pipelines import pipeline app = FastAPI() asr_pipeline = pipeline(task="auto-speech-recognition", model="damo/speech_paraformer-large_asr...") @app.post("/asr") def transcribe(audio_path: str): result = asr_pipeline(audio_in=audio_path) return {"text": result["text"]} ``` 3. **启动服务**: ```bash uvicorn main:app --reload --port 8000 ``` #### 五、部署优化建议 1. **性能调优**:启用GPU加速、使用模型量化(如`model.half()`) 2. **资源监控**:通过`nvidia-smi`或Prometheus监控显存/算力使用 3. **错误处理**:添加`try-except`块捕获`ModelNotFoundError`等异常
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值