数据库生存曲线_WGCNA、生存分析、ROC共同筛选biomarker

本文介绍了一种通过WGCNA结合生存分析和ROC曲线,从GEO和TCGA数据库中筛选多形性胶质母细胞瘤的Biomarker的方法。研究涉及差异基因筛选、共表达网络构建、GO和KEGG富集分析,以及关键基因的生存分析和ROC验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Biomarker有助于疾病诊断、判断疾病分期或者用来评价新药或新疗法在目标人群中的安全性及有效性。今天将介绍一篇新的文献:针对多形性胶质母细胞瘤,利用WGCNA筛选关键模块中的hub基因,同时结合生存分析、ROC曲线利用其他数据库数据进行验证并筛选最终Biomarker的过程。

背景简介

多形性胶质母细胞瘤是一种非常严重的脑瘤,占所有类型的15%左右,生存时间一般少于15个月,目前主要的治疗手段是外科手术,但常出现复发。因此,通过研究其分子和结构水平的机制将有助于疾病的治疗。

数据来源

通过GEO数据库下载GSE50161数据(34个肿瘤样本/13个正常对照样本)利用WGCNA,筛选hub基因。

通过

TCGA下载了148个样品的表达数据和临床数据,对hub基因进行生存分析,从而验证结果并筛选Biomarker。

再次下载

GEO数据库数据:GSE24084数据,基于ROC曲线分析,对hub基因进行验证,同样筛选Biomarker。

数据分析

下载GSE50161数据,利用limma包进行标准化处理,之后针对47个样品的数据进行差异表达基因的筛选。以P < 0.05,|LFC|> 2,共筛选了1913个差异基因(见下图a、b),结合热图可以明显发现这些差异基因在两组样品中表达变化趋势明显。

之后,按照无尺度网络的标准,设定power(18),对差异基因表达数据构建共表达网络,

共获得了4个有效模块(见下图c、d)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值