三个正交方向是一致么_施密特正交归一化

bd6655860f053da7b06480146ac2c0d6.png

(建议建议阅读原文)预备知识 正交归一基底
   若在

维矢量空间中任意给出
个线性无关的矢量, 如何得到一组正交归一化的基底呢? 我们可以用
施密特正交归一化(Schmidt orthonormalization). 先看一个二维的例子

例1 二维空间中的几何矢量
   已知两个几何矢量

坐标分别为
. 这两个矢量不共线, 说明它们线性无关. 但容易看出它们既不归一也不正交, 下面来进行施密特正交归一化.

   先把
归一化, 并记为

然后, 用内积来计算
方向的投影长度

所以
在平行于
方向的分量为

减去平行的分量, 就是垂直的分量

归一化并记为

现在可以验证, 基底
是正交归一的, 即
, 且

   若给出
维矢量空间中的
个(
)线性无关矢量
  1. 将第 1 个矢量归一化得到第 1 个基底
  2. 将第 2 个矢量分解为与第 1 个矢量平行和垂直的两个分量, 并将垂直分量归一化得到第 2 个基底
  3. 将第 3 个矢量分解为三个部分, 即分别平行于前两个基底的分量和一个垂直分量, 并将垂直分量归一化得到第 3 个基底
  4. 对第
    个基底重复该步骤, 得到第
    个基底

   用公式来表示这个过程, 就是:

习题1
   对三维空间中的矢量
进行施密特正交归一化.
推导
   这里来解释式 8 和式 9 . 我们假设已经知道
个正交归一的矢量, 由于
维空间中必然存在
个正交归一基底, 我们可以设剩下
的也已经知道(或者可以任意取). 于是
可以用基底展开为

式 8 得到前
项之和

所以式 9 就是第
项到第
项之和

所以对
, 都有
. 也就是说和已有的
个基底都正交.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值