目标检测_图解目标检测

这里列出了《图解目标检测》系列所有的文章,供大家阅读。

本系列以FastRCNN和FasterRCNN为入门材料,然后对Anchor做了详细的分析和对比,接着分析了Anchor-Free、detr两类后续新方法,以及目标检测中特征对齐,label assignment等至关重要的问题。

总而言之,这系列文章主要侧重于目标检测相关的经典最新文章解读、方法问题总结等等,也会持续进行更新。也请大家关注微信公众号:AI约读社


《图解目标检测》系列之一:图解 Fast RCNN & RoI Pooling

《图解目标检测》系列之二:图解 Faster R-CNN & RPN

《图解目标检测》系列之三:图解RoI Align & RoI Warp

《图解目标检测》系列之四:目标检测中的Anchor机制回顾

《图解目标检测》系列之五:目标检测Anchor的What/Where/When/Why/How

《图解目标检测》系列之六:目标检测中的Anchor-free回顾

《图解目标检测》系列之七:DETR:使用transformer做检测

《图解目标检测》系列之八:目标检测中的Feature Alignment

《图解目标检测》系列之九:目标检测中的Label Assignment

《图解目标检测》系列之十:目标检测中样本的正负难易

《图解目标检测》系列之十一:NAS for Detection

《图解目标检测》系列之十二:Semi-Supervised Learning for Object Detection


深度学习时代,目标检测领域涌现了大量的算法,发展历程如下,因为算法太多而篇幅有限,只能选择部分代表作:

6db01442094059e5e3a7616ef7cb935b.png
  • RCNN Family:RCNN是目标检测领域的一项杰出成果,它证明了使用深度神经网络的有效性,现在发展了一个庞大Family。例如:Faster RCNN、Mask RCNN等
  • SSD & YOLO Family:与两阶段方法(如RCNN Family)相比,这些模型跳过了region proposal(区域建议)阶段,直接从特征映射中提取检测结果。因此,单级模型速度更快,适合算力有限的device。
  • Anchor Free:2019年,Anchor Free的方法大爆发,并且取得了不错的成果。Anchor Free,其实可以看做是Single Anchor,每个object只有一个 anchor,对这个anchor进行类别分类、box和offset回归。不过有些anchor free的方法没有做offset,从这点来看,这些算法关注的是本身,而不是single anchor。Anyway,AnchorFree还是避免了anchor method中繁琐的anchor decoded操作。
  • DeTr:NLP领域工作者都知道,2018年transformer带来了多大的影响。transformer取得了不错的效果,基本上取代之前的model。CV看起来不像是transformer的领域,但仍然取得了不错的成绩,并解决了目前目标检测无法解决的问题。所以,重要性不言而喻。用一个词来形容DeTr:Elegant。因为再也无需设计anchor,添加NMS后处理等等。

目标检测的Method和Tricks

e43a3979992a468e956052a5da9b03ce.png

欢迎关注:AI约读社

6070338b8461b64a9d039563619e045a.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值