这里列出了《图解目标检测》系列所有的文章,供大家阅读。
本系列以FastRCNN和FasterRCNN为入门材料,然后对Anchor做了详细的分析和对比,接着分析了Anchor-Free、detr两类后续新方法,以及目标检测中特征对齐,label assignment等至关重要的问题。
总而言之,这系列文章主要侧重于目标检测相关的经典最新文章解读、方法问题总结等等,也会持续进行更新。也请大家关注微信公众号:AI约读社。
《图解目标检测》系列之一:图解 Fast RCNN & RoI Pooling
《图解目标检测》系列之二:图解 Faster R-CNN & RPN
《图解目标检测》系列之三:图解RoI Align & RoI Warp
《图解目标检测》系列之四:目标检测中的Anchor机制回顾
《图解目标检测》系列之五:目标检测Anchor的What/Where/When/Why/How
《图解目标检测》系列之六:目标检测中的Anchor-free回顾
《图解目标检测》系列之七:DETR:使用transformer做检测
《图解目标检测》系列之八:目标检测中的Feature Alignment
《图解目标检测》系列之九:目标检测中的Label Assignment
《图解目标检测》系列之十:目标检测中样本的正负难易
《图解目标检测》系列之十一:NAS for Detection
《图解目标检测》系列之十二:Semi-Supervised Learning for Object Detection
深度学习时代,目标检测领域涌现了大量的算法,发展历程如下,因为算法太多而篇幅有限,只能选择部分代表作:
- RCNN Family:RCNN是目标检测领域的一项杰出成果,它证明了使用深度神经网络的有效性,现在发展了一个庞大Family。例如:Faster RCNN、Mask RCNN等
- SSD & YOLO Family:与两阶段方法(如RCNN Family)相比,这些模型跳过了region proposal(区域建议)阶段,直接从特征映射中提取检测结果。因此,单级模型速度更快,适合算力有限的device。
- Anchor Free:2019年,Anchor Free的方法大爆发,并且取得了不错的成果。Anchor Free,其实可以看做是Single Anchor,每个object只有一个 anchor,对这个anchor进行类别分类、box和offset回归。不过有些anchor free的方法没有做offset,从这点来看,这些算法关注的是本身,而不是single anchor。Anyway,AnchorFree还是避免了anchor method中繁琐的anchor decoded操作。
- DeTr:NLP领域工作者都知道,2018年transformer带来了多大的影响。transformer取得了不错的效果,基本上取代之前的model。CV看起来不像是transformer的领域,但仍然取得了不错的成绩,并解决了目前目标检测无法解决的问题。所以,重要性不言而喻。用一个词来形容DeTr:Elegant。因为再也无需设计anchor,添加NMS后处理等等。
目标检测的Method和Tricks
欢迎关注:AI约读社