cnn 一维时序数据_时序矩阵分解 | 时序数据修补与预测

时序预测利用时序分析方法如AR和DLM,但面临高维数据和缺失数据的挑战。矩阵分解方法如MF用于数据修复,但无法进行预测。TRMF通过引入时间特性矩阵,结合MF进行时序数据预测,提高预测准确性。该方法适用于高维时序数据,如天气和交通流量预测。
摘要由CSDN通过智能技术生成

0. 时序预测方法的优势

时序分析与预测是天气预测、需求预测以及交通预测等诸多应用的核心。无论是天气预测中的气象传感器收集的气象数据还是交通预测中地磁线圈与视频卡口等回传的流量与车速数据等都有明显的时间特征。比如在交通上,每周交通量一般呈现周期性变化,在历史数据中,同一周日(比如每一个周的周五),通常具有较高的相似性,也就是说,某一周日(如周五)的交通量可能不仅与前几天(如周三、周四)的交通量有关,还与一周前(上周周五)的交通量有关。这样的时序关系能够在时序分析方法中反映出来,而非时序的分析方法则不能反映出这样的时序特征。所以时序分析方法如AR(Autoregression)与DLM(Dynamic linear models)等相比于其他非时序的方法如MF(Matrix factorization)更能真实反应数据本身的时序特征,具有天然的优势。

1.时序预测受到的挑战

虽然AR与DLM等时序分析方法相比与非时序的MF等方法具有诸多优势,但也受到诸多问题的挑战。随着传感器的发展以及数据种类和数据量的不断增加,应用中对时序分析与预测算法的可扩展性(处理大量、高维数据的能力)与在面对缺失数据(传感器故障、人为失误等情况造成的数据缺失)时的稳定性的要求不断提高。

1.1 可扩展性挑战

在天气预测中,时序分析需要处理的是来自上千种不同传感器传回的多达50,000种气象参数,而交通中同样需要分析与预测成千上万条不同路段未来的交通状态。这样的高维数据往往意味着庞大的计算量,然而大多数的传统时序分析方法如AR(Autoregression)与DLM(Dynamic linear models)等,由于其较高的计算复杂度,只适用于较低维的时序数据。一个

阶的AR(Autoregression)模型需要
的计算量来估计
个参数。而基于卡尔曼滤波的DLM则需要
的计算量来更新参数,其中
是隐藏变量的维度,在通常情况会选取得比
更大。在MLE(Maximum likelihood estimator)中广泛使用的R-DLM,不能处理n超过十位的数据集。

1.2 缺失数据敏感性挑战

AR模型不能处理存在数据缺失的哪怕是一维的数据集,对高维的数据更加无能为力。

2.矩阵分解(Matrix factorization)

自然地,常以矩阵的形式对高维时序数据进行建模,如交通中各路段的交通量在一段时间内的变化可以作为一个个时间序列存储在交通量矩阵中(一个路段的时间序列存储在矩阵的一行中)。

由于不同时间序列之间往往相互关联,如在交通中,某一路段的交通量与其上游、下游路段的交通量直接相关,往往通过MF(Matrix Factorization)或MC(Matrix completion)等方法学习时序矩阵的整体特征进行数据修复。由于较低的计算复杂度

, MF与MC方法可以处理较大规模的数据。在MF中,观测到的n维时间序列数据被组织在矩阵
中,矩阵
由维度特性矩阵
与时间特性矩阵
的组合进行低秩逼近,从而修补缺失数据。

使用最小二乘法、梯度下降等方法求解下述最小化问题,从而对矩阵

与矩阵
进行逼近:

其中,

是原矩阵
中非零元所处位置的集合;
为残差矩阵F范数的平方,用来描述
矩阵 与原矩阵
的差异;
分别是
的正则项,用来防止过拟合。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值