matlab中solver函数_MATLAB求解微分方程

本文介绍了如何使用MATLAB进行微分方程的求解,包括解析解和数值解的方法。对于解析解,强调了MATLAB函数的使用规则和示例;对于数值解,讲解了不同求解函数的选择,以及如何处理刚性问题和非刚性问题,并给出了具体代码示例。
摘要由CSDN通过智能技术生成

一.MATLAB求微分方程的解析解

MATLAB中求微分方程的解析解的函数如下:

1.这里的引号单双皆可,但必须为英文输入法下的引号。

2.在表达微分方程时,用字母D表示,D2,D3表示二阶、三阶微分,后面跟的是要求解的因变量。

3.自变量可以指定,不写时Matlab会默认为t。

4.在单引号中的方程的书写必须符合Matlab的语法规范,如‘y-Dy=2*x’,乘号不能省略。

5.初始值可以不给,不给求出来就是通解。

6.如果有多个微分方程,那么计算的实际上是微分方程组。

7.如果微分方程形式较为复杂,往往是得不到解析解的。

例:

1.

50002fd256d397a21100732494fce2a7.png

也可以这样写

syms y(x)%定义符号函数x,y
eqn=(y-diff(y,x)==2*x);%注意原来方程中的"="改成了"=="
dsolve(eqn)

2.

如果方程中含有不是应变量与自变量的参数

%法1
dsolve("y-Dy=a*x",'x')
%法2
syms y(x) a
eqn=(y-diff(y,x)==a*x);
dsolve(eqn)

3.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值