深度学习模型的迁移学习是指在一个任务上预先训练好的模型在另一个任务上使用的过程,例如在图像识别任务上训练好的模型可以迁移到语音识别任务上。
泛化能力则是指模型在未见过的数据上的表现能力,也就是说,模型能够通过学习训练数据中的规律,在从未见过的数据上仍然有较高的预测准确性。
因此,迁移学习主要关注的是如何使模型在不同的任务上有较好的表现,而泛化能力则关注的是模型在未见过的数据上的表现能力。
深度学习模型的迁移学习是指在一个任务上预先训练好的模型在另一个任务上使用的过程,例如在图像识别任务上训练好的模型可以迁移到语音识别任务上。
泛化能力则是指模型在未见过的数据上的表现能力,也就是说,模型能够通过学习训练数据中的规律,在从未见过的数据上仍然有较高的预测准确性。
因此,迁移学习主要关注的是如何使模型在不同的任务上有较好的表现,而泛化能力则关注的是模型在未见过的数据上的表现能力。