深度学习模型的迁移性和泛化性是什么?有什么区别?

深度学习模型的迁移学习是指在一个任务上预先训练好的模型在另一个任务上使用的过程,例如在图像识别任务上训练好的模型可以迁移到语音识别任务上。

泛化能力则是指模型在未见过的数据上的表现能力,也就是说,模型能够通过学习训练数据中的规律,在从未见过的数据上仍然有较高的预测准确性。

因此,迁移学习主要关注的是如何使模型在不同的任务上有较好的表现,而泛化能力则关注的是模型在未见过的数据上的表现能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值