求解cosx*sinx的导数,我们需要使用乘积法则,即:
( fg )' = f'g + fg'
其中f = cosx,g = sinx,f' = -sinx,g' = cosx
将f、g、f'和g'代入公式,得到:
(cosxsinx)' = (cosx)'sinx + cosx(sinx)' = -sinxsinx + cosx*cosx = cos^2(x) - sin^2(x)
因此,cosx*sinx的导数是cos^2(x) - sin^2(x)。
求解cosx*sinx的导数,我们需要使用乘积法则,即:
( fg )' = f'g + fg'
其中f = cosx,g = sinx,f' = -sinx,g' = cosx
将f、g、f'和g'代入公式,得到:
(cosxsinx)' = (cosx)'sinx + cosx(sinx)' = -sinxsinx + cosx*cosx = cos^2(x) - sin^2(x)
因此,cosx*sinx的导数是cos^2(x) - sin^2(x)。