可以参考下面的步骤:
加载MNIST数据集,并将其分为训练集和测试集。
训练一个基于支持向量机的分类器,用于对MNIST数字进行分类。
使用Matlab的可视化工具,绘制出训练集和测试集的准确率曲线,以评估模型的性能。
使用Matlab的可视化工具,绘制出训练集和测试集的混淆矩阵,以查看模型的识别精度。
使用Matlab的可视化工具,绘制出训练集和测试集的错误率曲线,以查看模型的识别准确率。
可以参考下面的步骤:
加载MNIST数据集,并将其分为训练集和测试集。
训练一个基于支持向量机的分类器,用于对MNIST数字进行分类。
使用Matlab的可视化工具,绘制出训练集和测试集的准确率曲线,以评估模型的性能。
使用Matlab的可视化工具,绘制出训练集和测试集的混淆矩阵,以查看模型的识别精度。
使用Matlab的可视化工具,绘制出训练集和测试集的错误率曲线,以查看模型的识别准确率。