Recall介绍和计算公式

Recall是一种衡量模型性能的指标,它表示模型预测出的正确结果占所有正确结果的比例。公式如下:

Recall = True Positive / (True Positive + False Negative)

True Positive是指模型预测结果为正,并且实际结果也为正的数量。False Negative是指模型预测结果为负,但实际结果为正的数量。

如果模型预测结果准确,则Recall值就会接近1;如果模型预测结果不准确,则Recall值就会接近0。提高Recall值的一种方法是降低False Negative的数量,即减少模型漏掉正确结果的情况。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值