Recall是一种衡量模型性能的指标,它表示模型预测出的正确结果占所有正确结果的比例。公式如下:
Recall = True Positive / (True Positive + False Negative)
True Positive是指模型预测结果为正,并且实际结果也为正的数量。False Negative是指模型预测结果为负,但实际结果为正的数量。
如果模型预测结果准确,则Recall值就会接近1;如果模型预测结果不准确,则Recall值就会接近0。提高Recall值的一种方法是降低False Negative的数量,即减少模型漏掉正确结果的情况。