Recall,Precision,Accuracy以及F-score计算公式

Recall,Precision,Accuracy以及F-score计算公式

在这里插入图片描述
Ture Positive:真正例(真的发生了)
True Negative:真反例(真的没发生)
False Positive:假正例(以为要发生结果没发生)
False Negative:假反例(以为不会发生结果发生了)

计算公式:

Recall(召回率):
在这里插入图片描述

Precision(准确率/精度):
在这里插入图片描述
Accuracy(正确率):
在这里插入图片描述
F-score:
在这里插入图片描述
当精确率更重要时,调整β的值小于1;当召回率更重要时,调整β的值大于1;等于1时权重相同。

F1-score取 β=1,即为在这里插入图片描述

我的天赋:看完即忘

对于多分类logistic回归结果,我们可以使用sklearn库中的相关函数来计算这些参数。具体步骤如下: 1. 导入必要的库和数据 ```python from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn.metrics import accuracy_score, roc_auc_score, recall_score, precision_score, f1_score from sklearn.datasets import load_iris # 加载数据 iris = load_iris() X = iris.data y = iris.target ``` 2. 创建模型并进行十折交叉验证 ```python # 创建模型 clf = LogisticRegression(multi_class='auto', solver='lbfgs', max_iter=5000) # 进行十折交叉验证 scores = cross_val_score(clf, X, y, cv=10) y_pred = cross_val_predict(clf, X, y, cv=10) ``` 3. 计算各个参数 ```python # 计算accuracy accuracy = accuracy_score(y, y_pred) # 计算auc auc = roc_auc_score(y, y_pred, multi_class='ovo', average='weighted') # 计算recall recall = recall_score(y, y_pred, average='weighted') # 计算precision precision = precision_score(y, y_pred, average='weighted') # 计算F1-score f1 = f1_score(y, y_pred, average='weighted') ``` 其中,multi_class参数指定了多分类问题的处理方式,solver参数指定了优化器的选择,max_iter参数指定了最大迭代次数。cross_val_score函数可以得到十折交叉验证的得分,cross_val_predict函数可以得到每个样本的预测结果。通过调用相关函数,即可计算出accuracy、auc、recallprecision以及F1-score等参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值