注意力机制学习(一)——通道注意力与pytorch案例

一、通道注意力机制简介

下面的图形象的说明了通道注意力机制
在这里插入图片描述

二、通道注意力机制pytorch代码

通道注意力机制的pytorch代码如下:

import torch
import torch.nn as nn
import torch.utils.data as Data


class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)

        self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x): # x 的输入格式是:[batch_size, C, H, W]
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
        out = avg_out + max_out
        return self.sigmoid(out)

1. 单独使用通道注意力机制的小案例

import torch
import torch.nn as nn
import torch.utils.data as Data


class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)

        self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
        out = avg_out + max_out
        return self.sigmoid(out)


def get_total_train_data(H, W, C, class_count):
    """得到全部的训练数据,这里需要替换成自己的数据"""
    import numpy as np
    x_train = torch.Tensor(
        np.random.random((1000, H, W, C)))  # 维度是 [ 数据量, 高H, 宽W, 长C]
    y_train = torch.Tensor(
        np.random.randint(0, class_count, size=(1000, 1))).long()  # [ 数据量, 句子的分类], 这里的class_count=4,就是四分类任务
    return x_train, y_train


if __name__ == '__main__':
    # ================训练参数=================
    epochs = 100
    batch_size = 30
    output_class = 14
    H = 40
    W = 50
    C = 30
    # ================准备数据=================
    x_train, y_train = get_total_train_data(H, W, C, class_count=output_class)
    train_loader = Data.DataLoader(
        dataset=Data.TensorDataset(x_train, y_train),  # 封装进Data.TensorDataset()类的数据,可以为任意维度
        batch_size=batch_size,  # 每块的大小
        shuffle=True,  # 要不要打乱数据 (打乱比较好)
        num_workers=6,  # 多进程(multiprocess)来读数据
        drop_last=True,
    )
    # ================初始化模型=================
    model = ChannelAttention(in_planes=H)
    # ================开始训练=================
    for i in range(epochs):
        for seq, labels in train_loader:
            attention_out = model(seq)
            seq_attention_out = attention_out.squeeze()
            for i in range(seq_attention_out.size()[0]):
                print(seq_attention_out[i])

可以看到输出是:

tensor([0.4440, 0.5005, 0.5533, 0.4530, 0.5494, 0.5430, 0.4911, 0.5339, 0.4627,
        0.5182, 0.4940, 0.4497, 0.4544, 0.5337, 0.4663, 0.4333, 0.5343, 0.4335,
        0.4711, 0.4569, 0.4508, 0.4532, 0.5102, 0.4824, 0.5231, 0.5328, 0.5092,
        0.5567, 0.5075, 0.5520, 0.5588, 0.4344, 0.5577, 0.4408, 0.4539, 0.4891,
        0.4513, 0.4472, 0.4983, 0.4991], grad_fn=<SelectBackward>)
tensor([0.4444, 0.5005, 0.5530, 0.4533, 0.5491, 0.5427, 0.4911, 0.5337, 0.4630,
        0.5181, 0.4940, 0.4500, 0.4546, 0.5335, 0.4665, 0.4337, 0.5341, 0.4339,
        0.4713, 0.4572, 0.4511, 0.4535, 0.5101, 0.4825, 0.5229, 0.5326, 0.5092,
        0.5564, 0.5074, 0.5516, 0.5584, 0.4348, 0.5574, 0.4412, 0.4541, 0.4892,
        0.4516, 0.4475, 0.4983, 0.4991], grad_fn=<SelectBackward>)
.......

这个就是每个batch中,每层的权重,其中输入模型的size是[30, 40, 50, 30],输出的attention_out的size是[30, 40, 1, 1]

2. 使用通道注意力机制的小案例

import torch
import torch.nn as nn
import torch.utils.data as Data


class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)

        self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
        out = avg_out + max_out
        return self.sigmoid(out)


class UseAttentionModel(nn.Module): # 这里可以随便定义自己的模型
    def __init__(self, H):
        super(UseAttentionModel, self).__init__()
        self.channel_attention = ChannelAttention(H)

    def forward(self, x):  # 反向传播
        attention_value = self.channel_attention(x)
        out = x.mul(attention_value) # 得到借助注意力机制后的输出
        return out


def get_total_train_data(H, W, C, class_count):
    """得到全部的训练数据,这里需要替换成自己的数据"""
    import numpy as np
    x_train = torch.Tensor(
        np.random.random((1000, H, W, C)))  # 维度是 [ 数据量, 高H, 宽W, 长C]
    y_train = torch.Tensor(
        np.random.randint(0, class_count, size=(1000, 1))).long()  # [ 数据量, 句子的分类], 这里的class_count=4,就是四分类任务
    return x_train, y_train


if __name__ == '__main__':
    # ================训练参数=================
    epochs = 100
    batch_size = 30
    output_class = 14
    H = 40
    W = 50
    C = 30
    # ================准备数据=================
    x_train, y_train = get_total_train_data(H, W, C, class_count=output_class)
    train_loader = Data.DataLoader(
        dataset=Data.TensorDataset(x_train, y_train),  # 封装进Data.TensorDataset()类的数据,可以为任意维度
        batch_size=batch_size,  # 每块的大小
        shuffle=True,  # 要不要打乱数据 (打乱比较好)
        num_workers=6,  # 多进程(multiprocess)来读数据
        drop_last=True,
    )
    # ================初始化模型=================
    model = UseAttentionModel(H)
    cross_loss = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)  # 优化器
    model.train()
    # ================开始训练=================
    for i in range(epochs):
        for seq, labels in train_loader:
            attention_out = model(seq)
            print(attention_out.size())
            print(attention_out)
  • 10
    点赞
  • 113
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 12
    评论
其中并联注意力机制受CBAM注意力机制的启发,将通道注意力机制机制和空间注意力机制并联,给予不同通道不同空间不同权重。本项目使用的数据集通过爬虫获取,清洗后使用百度平台EasyData进行标注,共682张 爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呆萌的代Ma

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值