Backtrader量化&回测1——基本的交易策略与挂单买卖

Backtrader Github页面:https://github.com/mementum/backtrader

官网Quickstart 教程:https://www.backtrader.com/docu/quickstart/quickstart/

温馨提示:大家不要用tushare这个库获取数据了,这个已经不能白嫖了…而且替换方案有很多

BackTrader编码流程

代码的架构也比较清晰:

  1. 控制所有流程的是cerebro组件
  2. 然后把数据(backtrader.feeds)、策略(backtrader.Strategy) 等都分别写好,最后添加到这个cerebro中即可

各个组件之间是类(class)的格式,继承自backtrader各自的父类,然后对有自定义需求的函数覆写,其他默认即可写一整套东西出来

交易单的触发

  1. 触发交易单需要手动的写在策略类的next()函数中,框架在执行过程中会不断循环next(),每经过一个K线,执行一次next(),示例可以见下面的代码

  2. 满足自定义的条件后,执行self.buy()即可买入,self.sell()即可卖出

  3. 策略类的notify_order是另一个会循环执行的函数,函数名称固定,可以跟踪订单的情况,比如使用order.executed.price就可以得到订单执行的价格,当策略中使用了条件单,限定了价格区间时,跟踪订单就非常有用了

示例代码

from datetime import datetime
import backtrader
from loguru import logger
import matplotlib.pyplot as plt
import pandas as pd
import efinance


def get_k_data(stock_code, begin: datetime, end: datetime) -> pd.DataFrame:
    """
    根据efinance工具包获取股票数据
    :param stock_code:股票代码
    :param begin: 开始日期
    :param end: 结束日期
    :return:
    """
    # stock_code = '600519'  # 股票代码,茅台
    k_dataframe: pd.DataFrame = efinance.stock.get_quote_history(
        stock_code, beg=begin.strftime("%Y%m%d"), end=end.strftime("%Y%m%d"))
    k_dataframe = k_dataframe.iloc[:, :9]
    k_dataframe.columns = ['name', 'code', 'date', 'open', 'close', 'high', 'low', 'volume', 'turnover']
    k_dataframe.index = pd.to_datetime(k_dataframe.date)
    k_dataframe.drop(['name', 'code', 'date'], axis=1, inplace=True)
    return k_dataframe


class MyStrategy1(backtrader.Strategy):  # 策略
    def __init__(self):
        # 初始化交易指令、买卖价格和手续费
        self.close_price = self.datas[0].close  # 这里加一个数据引用,方便后续操作
        self.sma = backtrader.indicators.SimpleMovingAverage(self.datas[0], period=5)  # 借用这个策略,计算5日的均线

    def notify_order(self, order):  # 固定写法,查看订单情况
        # 查看订单情况
        if order.status in [order.Submitted, order.Accepted]:  # 接受订单交易,正常情况
            return
        if order.status in [order.Completed]:
            if order.isbuy():
                logger.debug('已买入, 购入金额 %.2f' % order.executed.price)
            elif order.issell():
                logger.debug('已卖出, 卖出金额 %.2f' % order.executed.price)
        elif order.status in [order.Canceled, order.Margin, order.Rejected]:
            logger.debug('订单取消、保证金不足、金额不足拒绝交易')

    def next(self):  # 固定的函数,框架执行过程中会不断循环next(),过一个K线,执行一次next()
        # 此时调用 self.datas[0]即可查看当天的数据
        # 执行买入条件判断:当天收盘价格突破5日均线
        if self.close_price[0] > self.sma[0]:
            # 执行买入
            logger.debug("buy 500 in {}, 预期购入金额 {}, 剩余可用资金 {}", self.datetime.date(), self.data.close[0],
                         self.broker.getcash())
            self.buy(size=500, price=self.data.close[0])
        # 执行卖出条件已有持仓,且收盘价格跌破5日均线
        if self.position:
            if self.close_price[0] < self.sma[0]:
                # 执行卖出
                logger.debug("sell in {}, 预期卖出金额 {}, 剩余可用资金 {}", self.datetime.date(), self.data.close[0],
                             self.broker.getcash())
                self.sell(size=500, price=self.data.close[0])


if __name__ == '__main__':
    # 获取数据
    start_time = datetime(2015, 1, 1)
    end_time = datetime(2021, 1, 1)
    dataframe = get_k_data('600519', begin=start_time, end=end_time)
    # =============== 为系统注入数据 =================
    # 加载数据
    data = backtrader.feeds.PandasData(dataname=dataframe, fromdate=start_time, todate=end_time)
    # 初始化cerebro回测系统
    cerebral_system = backtrader.Cerebro()  # Cerebro引擎在后台创建了broker(经纪人)实例,系统默认每个broker的初始资金量为10000
    # 将数据传入回测系统
    cerebral_system.adddata(data)  # 导入数据,在策略中使用 self.datas 来获取数据源
    # 将交易策略加载到回测系统中
    cerebral_system.addstrategy(MyStrategy1)
    # =============== 系统设置 ==================
    # 设置启动资金为 100000
    start_cash = 1000000
    cerebral_system.broker.setcash(start_cash)
    # 设置手续费 万2.5
    cerebral_system.broker.setcommission(commission=0.00025)
    logger.debug('初始资金: {} 回测期间:from {} to {}'.format(start_cash, start_time, end_time))
    # 运行回测系统
    cerebral_system.run()
    # 获取回测结束后的总资金
    portvalue = cerebral_system.broker.getvalue()
    pnl = portvalue - start_cash
    # 打印结果
    logger.debug('净收益: {}', pnl)
    logger.debug("总资金: {}", portvalue)
    cerebral_system.plot(style='candlestick')
    plt.show()

最后查看日志:

.........
2022-05-05 16:38:06.484 | DEBUG    | __main__:<module>:70 - 净收益: 3445540.136249995
2022-05-05 16:38:06.484 | DEBUG    | __main__:<module>:71 - 总资金: 4445540.136249995

资产翻了小4倍,哇咔咔咔咔咔咔,最后的结果图如下:
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呆萌的代Ma

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值