需要提前知道的一点是:Backtrader
是一个回测平台,并不是一个训练模型的平台,因为添加数据比较繁琐,因此不建议使用Backtrader
训练模型。而是训练完模型后,放到Backtrader
上进行回测
1. 定义策略中的参数
-
定义策略参数使用:
class MyStrategy1(backtrader.Strategy): # 策略 params = ( ("参数名", 参数值), # 注意要有逗号!! )
后续就可以通过
self.params.参数名
直接调用了 -
通过外部指定参数时,使用以下两种方法:
cerebral_system.addstrategy(MyStrategy1, simple_period=5) # 这里定义参数 # optstrategy与addstrategy类似,但是要求参数为可迭代对象 # cerebral_system.optstrategy(MyStrategy1, simple_period=range(4, 10))
addstrategy
参数接收的是一个固定值,一般回测用;
optstrategy
参数接收的是一个可迭代的值,一般参数调优用
2. 添加额外的数据集
比如用到文本数据,或是其他数据时,不好通过框架添加进来,就可以在策略类中使用:
class MyStrategy1(backtrader.Strategy): # 策略
def __init__(self):
# ...
self.new_data = pd.read_csv('其他外部数据.csv') # 这里可以手动添加额外的数据集或参考
这样就可以把任意外部数据添加进来了,但是这样相当于摆脱了框架的管理,策略里要注意逻辑
示例代码
from datetime import datetime
import backtrader
from loguru import logger
import matplotlib.pyplot as plt
from utils import get_k_data
import pandas as pd
class MyStrategy1(backtrader.Strategy): # 策略
# 初始化策略参数
# 初始化模型参数,默认为3,可以使用策略的 addstrategy() 时修改
params = (
("simple_period", 3), # 注意要有逗号!!
)
def __init__(self):
# 策略
logger.debug('模型参数:{}', self.params.simple_period)
# 借用移动平均的策略,计算5日的均线
self.sma = backtrader.indicators.SimpleMovingAverage(self.datas[0], period=self.params.simple_period)
# 这里添加一些快捷的方法,运行过程中会实时更新这部分数据
self.close_price = self.datas[0].close # self.close_price会在next中显示当天的收盘价
# self.new_data = pd.read_csv('其他外部数据.csv') # 这里可以手动添加额外的数据集或参考
def next(self): # 固定的函数,框架执行过程中会不断循环next(),过一个K线,执行一次next()
# 执行买入条件判断:当天收盘价格突破5日均线
if self.close_price[0] > self.sma[0]:
# 执行买入
logger.debug("buy 500 in {}, 预期购入金额 {}, 剩余可用资金 {}", self.datetime.date(), self.data.close[0],
self.broker.getcash())
self.buy(size=500, price=self.data.close[0])
# 执行卖出条件已有持仓,且收盘价格跌破5日均线
if self.position:
if self.close_price[0] < self.sma[0]:
# 执行卖出
logger.debug("sell in {}, 预期卖出金额 {}, 剩余可用资金 {}", self.datetime.date(), self.data.close[0],
self.broker.getcash())
self.sell(size=500, price=self.data.close[0])
if __name__ == '__main__':
# 获取数据
start_time = datetime(2015, 1, 1)
end_time = datetime(2021, 1, 1)
dataframe = get_k_data('600519', begin=start_time, end=end_time)
# =============== 为系统注入数据 =================
# 加载数据
data = backtrader.feeds.PandasData(dataname=dataframe, fromdate=start_time, todate=end_time)
# 初始化cerebro回测系统
cerebral_system = backtrader.Cerebro() # Cerebro引擎在后台创建了broker(经纪人)实例,系统默认每个broker的初始资金量为10000
# 将数据传入回测系统
cerebral_system.adddata(data) # 导入数据,在策略中使用 self.datas 来获取数据源
# 将交易策略加载到回测系统中
cerebral_system.addstrategy(MyStrategy1, simple_period=5) # 这里定义参数
# optstrategy与addstrategy类似,但是要求参数为可迭代对象
# cerebral_system.optstrategy(MyStrategy1, simple_period=range(4, 10))
# =============== 系统设置 ==================
# 设置启动资金为 100000
start_cash = 1000000
cerebral_system.broker.setcash(start_cash)
# 设置手续费 万2.5
cerebral_system.broker.setcommission(commission=0.00025)
logger.debug('初始资金: {} 回测期间:from {} to {}'.format(start_cash, start_time, end_time))
# 运行回测系统
cerebral_system.run()
# 获取回测结束后的总资金
portvalue = cerebral_system.broker.getvalue()
pnl = portvalue - start_cash
# 打印结果
logger.debug('净收益: {}', pnl)
logger.debug("总资金: {}", portvalue)
cerebral_system.plot(style='candlestick')
plt.show()
其中utils
中的get_k_data
函数如下:
import efinance
import pandas as pd
from datetime import datetime
def get_k_data(stock_code, begin: datetime, end: datetime) -> pd.DataFrame:
"""
根据efinance工具包获取股票数据
:param stock_code:股票代码
:param begin: 开始日期
:param end: 结束日期
:return:
"""
# stock_code = '600519' # 股票代码,茅台
k_dataframe: pd.DataFrame = efinance.stock.get_quote_history(
stock_code, beg=begin.strftime("%Y%m%d"), end=end.strftime("%Y%m%d"))
k_dataframe = k_dataframe.iloc[:, :9]
k_dataframe.columns = ['name', 'code', 'date', 'open', 'close', 'high', 'low', 'volume', 'turnover']
k_dataframe.index = pd.to_datetime(k_dataframe.date)
k_dataframe.drop(['name', 'code', "date"], axis=1, inplace=True)
return k_dataframe