文章目录
引言
在机器学习还有深度学习中,经常会用到这几个函数,为了便于以后熟练使用,现在对这几个函数进行总结。
np.random.rand()
该函数括号内的参数指定的是返回结果的形状,如果不指定,那么生成的是一个浮点型的数;如果指定一个数,那么生成的是一个numpy.ndarray类型的数组;如果指定两个数字,那么生成的是一个二维的numpy.ndarray类型的数组。如果是两个以上的数组,那么返回的维度就和指定的参数的数量个数一样。其返回结果中的每一个元素是服从0~1均匀分布的随机样本值,也就是返回的结果中的每一个元素值在0-1之间。
import numpy as np
mat = np.random.rand()
print(mat)
print(type(mat))
mat = np.random.rand(2)
print(mat)
print(type(mat))
mat = np.random.rand(3, 2)
print(mat)
print(type(mat))
0.3302456019848581
<class 'float'>
[0.29082465 0.06080064]
<class 'numpy.ndarray'>
[[0.97332433 0.26962929]
[0.14822891 0.48075266]
[0.51435701 0.6777654 ]]
<class 'numpy.ndarray'>
np.random.randn()
该函数和rand()函数比较类似,只不过运用该函数之后返回的结果是服从均值为0,方差为1的标准正态分布,而不是局限在0-1之间,也可以为负值,因为标准正态分布的曲线是关于x轴对阵的。
其括号内的参数如果不指定,那么生成的是一个浮点型的数;如果指定一个数,那么生成的是一个numpy.ndarray类型的数组;如果指定两个数字,那么生成的是一个二维的numpy.ndarray类型的数组。和rand()相比,除了元素值不一样,其他的性质是一样的。
举例说明:
import numpy as np
mat = np.random.randn()
print(mat)
print(type(mat))
mat = np.random.randn(2)
print(mat)
print(type(mat))
mat = np.random.randn(3, 2)
print(mat)
print(type(mat))
-0.21972623884742504
<class 'float'>
[-0.44100389 -0.60992345]
<class 'numpy.ndarray'>
[[ 1.33705353 -2.1104243 ]
[ 0.1205673 -1.17654688]
[-0.71155393 0.89750309]]
<class 'numpy.ndarray'>
np.random.randint(low,high,size,dtype)
- low:生成的元素值的最小值,即下限,如果没有指定high这个参数,则low为生成的元素值的最大值。
- high:生成的元素值的最大值,即上限。
- size:指定生成元素值的形状,也就是数组维度的大小。
- dtype:指定生成的元素值的类型,如果不指定,默认为整数型
返回结果:返回值是一个大小为size的数组,如果指定了low和high这两个参数,那么生成的元素值的范围为[low,high),不包括high;如果不指定high这个参数,则生成的元素值的范围为[0,low)。如果不指定size这个参数,那么生成的元素值的个数只有一个。
import numpy as np
# 指定一个参数low
mat = np.random.randint(low=1)
print(mat)
print(type(mat))
# 指定low和high,生成一个[low,high)的元素值
mat = np.random.randint(low=1, high=5)
print(mat)
print(type(mat))
# 指定size大小,生成一个三行三列的二维数组,元素个数为3x3=9个
mat = np.random.randint(low=2, high=10, size=(3, 3))
print(mat)
# 查看默认元素值的类型
print(type(mat[0][0]))
mat = np.random.randint(low=2, high=10, size=(3, 3), dtype=np.uint8)
print(mat)
print(type(mat[0][0]))
0
<class 'int'>
2
<class 'int'>
[[9 7 9]
[2 7 9]
[4 6 3]]
<class 'numpy.int32'>
[[3 6 8]
[8 2 4]
[9 7 7]]
<class 'numpy.uint8'>
np.random.uniform(low,high,size)
- low:生成元素值的下界,float类型,默认值为0
- high:生成元素值的上界,float类型,默认值为1
- size:输出样本的数目,可以指定一个值,也可指指定大于等于两个值
- 返回对象:ndarray类型,形状为size中的数值指定,其元素个数为size指定的参数的乘积
我们前面已经说过了rand()这个函数,它返回的元素值是服从0-1的均匀分布,那如果不想要生成的是0-1范围内的均匀分布,想要其它范围内的均匀分布怎么办呢。
uniform()实现了这个功能,它可以生成服从指定范围内的均匀分布的元素。其返回值的元素类型为浮点型。需注意的是元素值的范围包含low,不包含high。
import numpy as np
# 指定一个参数low
mat = np.random.uniform()
print(mat)
print(type(mat))
# 指定low和high,生成一个[low,high)的元素值
mat = np.random.uniform(low=5, high=10)
print(mat)
print(type(mat))
# 指定size大小,生成一个三行三列的二维数组,元素个数为3x3=9个
mat = np.random.uniform(low=2, high=10, size=(3, 3))
print(mat)
# 查看默认元素值的类型
print(type(mat[0][0]))
mat = np.random.uniform(low=2, high=10, size=(3, 3, 2))
print(mat)
print(type(mat[0][0][0]))
0.30890343025056644
<class 'float'>
6.179533175254239
<class 'float'>
[[4.78938242 2.6997556 9.57992305]
[4.54539736 2.29297774 5.67460754]
[2.16260941 9.79336582 3.88221078]]
<class 'numpy.float64'>
[[[6.95629018 9.09524542]
[5.5167461 8.58762047]
[9.96385597 4.94498637]]
[[7.39177209 6.52374891]
[3.58829809 3.81779054]
[3.03570073 8.53538727]]
[[4.08470882 5.27155178]
[3.49804102 4.4184242 ]
[5.27197221 4.7202293 ]]]
<class 'numpy.float64'>
参考文献
- https://blog.csdn.net/BaoITcore/article/details/125273828