正交变换在基下的矩阵都是可逆阵_矩阵的本质 (1) 线性空间的概念

在很多讲述线性代数的教材中,把线性方程组的求解几乎当作一种终极目的,这必然会让读者产生对线性代数甚至对整个数学的误会,仿佛所有的数学理论都是为了求解一些特定的问题而存在。我将用两篇文章介绍关于线性空间和线性映射的基本内容,作为高中生和本科生的科普阅读。

我们熟悉的空间直角坐标系

是最直观的线性空间,它的组成元素是所谓的向量

这些向量可以做加法和数量乘法运算

这些运算满足某些特定的运算法则,例如加法的交换律、结合律。

接下来要介绍的线性空间概念将是抽象的,我们认为线性空间中的元素是向量,但是不要把向量直接和任何具体的事物做对应。

线性空间是定义在域上的,所谓就是一种代数系统,它可以做四则运算且对四则运算保持封闭。有理数域、实数域、复数域是常见的域,比如两个有理数相加、相乘等等还是有理数,但是整数集不是域,因为两个整数相除不一定是整数。用

表示域,设

线性空间是指

再给出一些线性空间的例子。首先是欧式空间

欧式空间

中的加法和数量乘法运算定义为

另外给出两个抽象的线性空间,第一个是

上的一元多项式空间

它的加法和数量乘法按照常规的四则运算定义。

第二个是区间

上的连续函数空间
它的加法和数量乘法按照函数的运算定义。

从这两个例子可以看出,线性空间中的元素没有形式上的限制,例如可以是多项式或者连续函数,我们不关心所谓的向量是什么内容,只要它在运算上满足条件就可以。

现在说明欧式空间

和多项式空间
连续函数空间
的区别,就是前者是有限维的,给出线性空间的基、维数和向量的坐标的定义。

上的线性空间,则
是指

可以证明,同一个线性空间如果有基,那么它的不同的基含有相同个数的向量。这时称

维数
在基
下的
坐标

将向量表示成坐标以后,就可以用我们最习惯的方法做向量的运算了。

欧式空间

的维数是
欧式空间
是有限维的。

有限维线性空间是一类简单的空间,这么说是因为在同一个域

上的同样维数的线性空间是
同构的,也就是在线性代数的意义上可以看作是相同的。

而多项式空间

和连续函数空间
没有基,称它们是无限维的。无限维空间要比有限维空间复杂得多,在本系列文章中不讨论。

最后介绍矩阵。矩阵是一个表

我们可以把

的每一列看作是
维线性空间中的向量在某个基下的坐标,从而
是含有
个向量的向量组;也可以把
的每一行看作是
维线性空间中的向量在某个基下的坐标,从而
是含有
个向量的向量组。

特别地,我们可以把

阶方阵

看作是

维线性空间中的某个基本身,这就是为什么将它称为
单位矩阵

上的
阶方阵
的列向量
是线性无关的,即

则称

可逆矩阵。这时
也成为
维线性空间中的一个基。至于可逆矩阵的名称由何而来,我在下一篇文章中介绍。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值