DL(1) - 神经网络基本概念

本文介绍了神经网络的基本概念,包括神经元的结构、激活函数的作用,特别是sigmoid和softmax函数的区别。讨论了神经网络的结构,重点是前馈神经网络,并提及了损失函数和反向传播在训练中的应用。同时,通过实例展示了如何使用TensorFlow2.0构建单神经元和多神经元的分类网络。
摘要由CSDN通过智能技术生成


神经元基本结构

  • 神经元: 神经网络的最小单元,每个神经元其实都是由两部分组成:数学模型( W i x i + b W_{i}x_{i}+b Wixi+b)和激活函数 h ( t ) h(t) h(t)

    1. 如下图:单神经元网络,n个输入信号(图中是3个),这些信号通过带权重和偏移量的数学模型计算再经过激活函数处理,最终产生神经元的输出。( W W W 为权重, b b b 为偏移量 , f f f h h h 为激活函数。)
      在这里插入图片描述
    2. 因此每个神经元,内部结构就是一个数学模型,如下图:
      在这里插入图片描述
    3. EG:
      在这里插入图片描述

  • 激活函数: 激活函数有各种各样的类型,一旦确定了激活函数,就确定了此神经元的具体数学模型。
    在这里插入图片描述

    1. 如果神经元没有选用激活函数,那就相当于用了线性的激活函数即 f ( x ) = x f(x) = x f(x)=x,神经元输出值相当于还是 x x x。如果神经元选用"sigmoid",‘relu’,‘tanh’,'elu’等激活函数,那会神经元的输出值将会进行相应的非线性变换。
    2. Sigmoid激活函数 f ( x ) = 1 1 + e − x f(x) = \frac{1}{1+e^{-x}} f(x)=1+ex1
      在这里插入图片描述
      x x x 经过此激活函数,神经元输出值被限定在[0,1]的范围内,这样可以很简单的通过定义阀值对数据进行二分类,因此sigmoid激活神经元又称为二分类神经元(通常作为最终输出层神经元的激活函数)。
    3. 通常仅用于多分类神经网络任务 输出层 的激活函数ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值