神经网络基本概念
神经元基本结构
-
神经元: 神经网络的最小单元,每个神经元其实都是由两部分组成:数学模型( W i x i + b W_{i}x_{i}+b Wixi+b)和激活函数 h ( t ) h(t) h(t)。
- 如下图:单神经元网络,n个输入信号(图中是3个),这些信号通过带权重和偏移量的数学模型计算再经过激活函数处理,最终产生神经元的输出。( W W W 为权重, b b b 为偏移量 , f f f即 h h h 为激活函数。)
- 因此每个神经元,内部结构就是一个数学模型,如下图:
- EG:
- 如下图:单神经元网络,n个输入信号(图中是3个),这些信号通过带权重和偏移量的数学模型计算再经过激活函数处理,最终产生神经元的输出。( W W W 为权重, b b b 为偏移量 , f f f即 h h h 为激活函数。)
-
激活函数: 激活函数有各种各样的类型,一旦确定了激活函数,就确定了此神经元的具体数学模型。
- 如果神经元没有选用激活函数,那就相当于用了线性的激活函数即 f ( x ) = x f(x) = x f(x)=x,神经元输出值相当于还是 x x x。如果神经元选用"sigmoid",‘relu’,‘tanh’,'elu’等激活函数,那会神经元的输出值将会进行相应的非线性变换。
- Sigmoid激活函数: f ( x ) = 1 1 + e − x f(x) = \frac{1}{1+e^{-x}} f(x)=1+e−x1
x x x 经过此激活函数,神经元输出值被限定在[0,1]的范围内,这样可以很简单的通过定义阀值对数据进行二分类,因此sigmoid激活神经元又称为二分类神经元(通常作为最终输出层神经元的激活函数)。 - 通常仅用于多分类神经网络任务 输出层 的激活函数ÿ