两组回归系数差异检验_科学网-如何检验两组回归系数之间的差异显著性?-李国强的博文...

本文介绍了如何在R软件中检验两组回归系数(斜率)的差异显著性。通过建立线性回归模型,设置虚变量来对比不同组别的回归系数,例如在性别与体重关系的例子中,发现女性组的斜率与男性组相比存在显著差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4115902165_1be36b844f_o.jpg

4115902169_0891500712_o.jpg

4115902179_f2d17093ff_o.jpg

在 Li Jingwen 的这篇文章中,图3中显示了两个生育时期的线性回归模型。随后作者比较了两个生育时期线性回归模型的回归系数(斜率)和截距,作者发现两个生育时期回归系 数(斜率)差异不显著,而截距差异显著。

这种两组或多组回归系数之间的差异性如何检验?如何在R软件中实现?为此,我总结了回归系数 的比较方法,如下。

回归系数的比较通常可以分为两类,线性回归模型回归系数比较和非线性回归模型回归系数比较。

我们先谈谈线性回归模型回归系数比较,而本帖只针对上面的文献讲解两组回归系数之间的比较。 多组线性回归模型的回归系数比较与两组之间比较类似,只是多了几个虚变量,而非线性回归系统比较则使用的是残差平方和简化测验(sum of square reduction test, SSRT),你可以参考”不同株型小麦干物质积累与分配对氮肥响应的动态分析“。

我们虚构有一个数据集,有gender、height和weight三个变量,文件名为 new.csv。

# 设置工作目录

setwd("E:\My Documents\R\data")

#读取外部csv格式数 据

mydata

# 查看数据集

mydata

4117177152_7f31afc75a_o.jpg

4117177144_7c97a7930c_o.jpg

这样我们首先得到了线性回归方程。现在假定零假设Ho:Bf-Bm=0,其中Bf为女性组的回归系数,Bm为男性组的回归系数。

我们需要定义两个虚变量,虚变量female的值为1表示女性,为0表示男性。虚变量 femht为female与女性身高的乘积。

4117177146_7e86b8f6d1_o.jpg

上面回归系数的统计学意义如下:

INTERCEP 5.601677 : 男性组线性回归截距

FEMALE -7.999147 : 女性组线性回归截距 – 男性组线性回归截距

HEIGHT 3.189727 : 男性组斜率,即Bm.

FEMHT -1.093855 : 女性组斜率 – 男性组斜率

FEMHT项对应的是零假设Ho:Bf-Bm=0,从P值=3.5456e-15可知,拒绝 零假设,表明女性组斜率与男性组斜率之间存在显著差异。

转载本文请联系原作者获取授权,同时请注明本文来自李国强科学网博客。

收藏

分享

分享到:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值