cifar10数据集测试有多少张图_测试时增强-TTA (Test time augmention)

数据增强通常在训练阶段进行,目前一些文献在测试时进行数据增强,在分割、分类、检测等场景都取得了不错的效果。

测试时增强,指的是在推理(预测)阶段,将原始图片进行水平翻转、垂直翻转、对角线翻转、旋转角度等数据增强操作,得到多张图,分别进行推理,再对多个结果进行综合分析,得到最终输出结果。

检测:

YOLOv5x模型,TTA将mAP提升了1.6个百分点

ba35627eb68b80d8c0f78264d75cbe0d.png

分割:

显微镜细胞分割,提升了1.1个百分点

Test-time augmentation for deep learning-based cell segmentation on microscopy images

caf939395add29a68cff00576e3cc90c.png

分类:

CIFAR10 提升了3个百分点

https://towardsdatascience.com/test-time-augmentation-tta-and-how-to-perform-it-with-keras-4ac19b67fb4d

83ff2aac9f1ca1c472266301314fd63a.png

TTA开源代码 Image Test Time Augmentation with PyTorch

qubvel/ttach

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值