数据增强通常在训练阶段进行,目前一些文献在测试时进行数据增强,在分割、分类、检测等场景都取得了不错的效果。
测试时增强,指的是在推理(预测)阶段,将原始图片进行水平翻转、垂直翻转、对角线翻转、旋转角度等数据增强操作,得到多张图,分别进行推理,再对多个结果进行综合分析,得到最终输出结果。
检测:
YOLOv5x模型,TTA将mAP提升了1.6个百分点
分割:
显微镜细胞分割,提升了1.1个百分点
Test-time augmentation for deep learning-based cell segmentation on microscopy images
分类:
CIFAR10 提升了3个百分点
https://towardsdatascience.com/test-time-augmentation-tta-and-how-to-perform-it-with-keras-4ac19b67fb4d
TTA开源代码 Image Test Time Augmentation with PyTorch
qubvel/ttach