python dbscan 如何确定eps参数_Scikit-DBSCAN-eps和min_样品值测定

我一直在尝试使用scikit实现DBSCAN,但到目前为止还无法确定epsilon和min_样本的值,这将给我提供大量的集群。我试图在距离矩阵中找到平均值,并使用了平均值两边的值,但没有得到令人满意的簇数:

输入:db=DBSCAN(eps=13.0,min_samples=100).fit(X)

labels = db.labels_

# Number of clusters in labels, ignoring noise if present.

n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)

print('Estimated number of clusters: %d' % n_clusters_)

输出:Estimated number of clusters: 1

输入:db=DBSCAN(eps=27.0,min_samples=100).fit(X)

输出:Estimated number of clusters: 1

还有其他信息:The average distance between any 2 points in the distance matrix is 16.8354

the min distance is 1.0

the max distance is 258.653

代码中传递的X不是距离矩阵,而是特征向量矩阵。

所以请告诉我如何确定这些参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值