python矩阵运算函数_Numpy中矩阵计算模块linalg的常用函数

numpy linalg 模块

线性代数

numpy.linalg模块包含线性代数的函数。使用这个模块,可以计算矩阵逆、求特征值、解线性方程组以及求解行列式等。

import numpy as np

1.计算矩阵

创建矩阵

A = np.mat('0 1 2;1 0 3;4 -3 8')

print(A)

#[[0 1 2]]

#[[1 0 3]]

#[[4 -3 8]]

使用inv函数计算逆矩阵

inv = np.linalg.inv(A)

print(inv)

#[[-4.5 7. -1.5 ]]

#[-2. 4. -1.]

#[1.5 -2. 0.5]]

2.求解线性方程组

numpy.linalg 中的函数 solve 可以求解形如 Ax = b 的线性方程组,其中 A 为矩阵,b 为一维或二维的数组,x 为未知变量。

#创建矩阵和数组

B = np.mat('1 -2 1;0 2 -8;-4 5 9')

b = np.array([0,8,-9])

#调用 solve 函数求解线性方程

x = np.linalg.solve(B,b)

print(x)

#out:[29. 16. 3]

#使用 dot 函数检查求得的解是否正确

print(np.dot(B,x))

#out:[[0. 8. -9.]]

3.特征值和特征向量

特征值 ( eigenvalue ) 即方程 Ax = ax 的根,是一个标量。其中,A 是一个二维矩阵,x 是一个一维向量。特征向量(eigenvector)是关于特征值的向量

numpy.linalg模块中,eigvals函数可以计算矩阵的特征值,而eig函数可以返回一个包含特征值和对应的特征向量的元组

import numpy as np

#创建一个矩阵

C = np.mat('3 -2;1 0')

#调用eigvals函数求解特征值

c0 = np.linalg.eigvals(C)

print(c0)

#out:[2. 1.]

使用 eig 函数求解特征值和特征向量(该函数将返回一个元组,按列排放着特征值和对应的特征向量,其中第一列为特征值,第二列为特征向量)

c1,c2 = np.linalg.eig(C) #传入两个变量

print(c1)

#[2. 1. ]

print(c2)

#[[0.89442719 0.70710678]

#[0.4472136 0.70710678]]

#使用 dot 函数验证求得的解是否正确‘

for i in range(len(c1)):

print('left:',np.dot(C,c2[:,i]))

print('right:',c1[i] * c2[:i])

奇异值分解

SVD(Singular Value Decomposition,奇异值分解)是一种因子分解运算,将一个矩阵分解为3个矩阵的乘积

numpy.linalg模块中的svd函数可以对矩阵进行奇异值分解。该函数返回3个矩阵——U、Singma和V,其中U和V是正交矩阵,Sigma包含输入矩阵的奇异值

import numpy as np

#分解矩阵

D = np.mat('4 11 14;8 7 -2')

#使用svd函数分解矩阵

U,Sigma,V = np.linalg.svd(D,full_matrices=False)

print("U:",U)

#U:[[-0.9486833 -0.31622777]

#[-0.31622777 0.9486833 ]]

print("Sigma:",Sigma)

#Sigma: [ 18.97366596 9.48683298]

print ("V",V)

#V [[-0.33333333 -0.66666667 -0.66666667]

# [ 0.66666667 0.33333333 -0.66666667]]

#使用diag函数生成完整的奇异值矩阵。将分解出的3个矩阵相乘

print(U * np.diag(Sigma) * V)

#[[ 4. 11. 14.]

# [ 8. 7. -2.]]

广义逆矩阵

使用numpy.linalg模块中的pinv函数进行求解, 注:inv函数只接受方阵作为输入矩阵,而pinv函数则没有这个限制

import numpy as np

# 创建一个矩阵

E = np.mat("4 11 14;8 7 -2")

# 使用pinv函数计算广义逆矩阵

pseudoinv = np.linalg.pinv(E)

print (pseudoinv)

#[[-0.00555556 0.07222222]

# [ 0.02222222 0.04444444]

# [ 0.05555556 -0.05555556]]

# 将原矩阵和得到的广义逆矩阵相乘

print (E * pseudoinv)

#[[ 1.00000000e+00 -5.55111512e-16]

# [ 0.00000000e+00 1.00000000e+00]]

行列式

numpy.linalg模块中的det函数可以计算矩阵的行列式,求模

import numpy as np

# 计算矩阵的行列式

F = np.mat("3 4;5 6")

# 使用det函数计算行列式

print (np.linalg.det(F))

# -2.0

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值