量化交易策略:中国市场的Carhart四因子模型python代码解析

上一篇文章我们介绍了fama-french三因子模型,但是是仅凭这三个因子无法完全解释股票回报的变动,还需要加入动量因子或风格因子,今天,就让我们一起了解carhart四因子模型。

carhart四因子模型

carhart四因子模型的诞生,源于对资本市场的深入研究和对有效市场假说的不断挑战。1993年,fama和french提出了著名的三因子模型,认为市场超额收益、市值大小和账面市值比是影响股票回报的关键因素。然而,随着研究的深入,一些学者发现仅凭这三个因子无法完全解释股票回报的变动。于是,carhart在1997年提出了加入动量因子的四因子模型,这一创新不仅丰富了资产定价理论,也为量化交易策略的实践提供了新的思路。

carhart四因子模型的构成

carhart四因子模型的核心在于其四个因子:市场超额收益(market)、市值大小(size)、账面市值比(book-to-market)以及动量(momentum)。这四个因子分别捕捉了市场风险溢价、小市值股票的超额收益、价值股的超额收益以及历史表现良好股票的持续趋势。通过构建这四个因子的投资组合,并计算每个因子的敏感度,投资者可以对股票的预期回报进行更为精确的预测。

市场因子MKT的构建与

本表以Fama-French三因子资产定价模型为依据,提供市场溢酬因子(Rm-Rf),市值因子(SMB)和账面市值比因子(HML)的月序列数据。 表中计算所用的无风险收益数据选择标准为:开始--2002年8月6日用三个月期定期银行存款利率; 2002年8月7日--2006年10月7日用三个月期中央银行票据的票面利率; 2006年10月8日--当前,用上海银行间3个月同业拆放利率。 三因子数据包括: 市场溢酬因子__流通市值加权 Rm-Rf 市值因子__流通市值加权 SMB 账面市值比因子__流通市值加权 HML 市场溢酬因子__总市值加权 Rm-Rf 市值因子__总市值加权 SMB 账面市值比因子__总市值加权 HML 有以下3种方式计算的月惯性因子(又称动量因子)。 计算方法1:惯性因子=前n个月累积收益最高的30%的所有股票组合加权收益率-前n个月累积收益最低的30%的所有股票组合加权收益率。 计算方法2:惯性因子=前n个月累积收益最高的10%的所有股票组合加权收益率-前n个月累积收益最低的10%的所有股票组合加权收益率。 计算方法3:惯性因子=前n个月累积收益大于零的所有股票组合加权收益率-前n个月累积收益小于零所有股票组合加权收益率。 其中,n=3、4、5、6、7、8、9、10、11、12、18、24;加权方式为等权、流通市值加权、总市值加权。 在Carhart四因子模型经典文献中,惯性因子=前11个月累积收益最高的30%的股票组合等权收益率-前11个月累积收益最低的30%的股票组合等权收益率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python自动化工具

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值