基于多尺度卷积神经网络的图像伪造定位测试脚本

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本项目名为forgerylocCNN-py,专注于运用多尺度卷积神经网络(MSCNN)技术来识别图像中被篡改或伪造的区域。这种技术在数字媒体安全领域尤为重要,有助于检测图像的潜在伪造部分。项目以Python语言编写,利用深度学习库,如TensorFlow和PyTorch,提供了一个测试脚本以验证模型性能。脚本包含加载模型、输入图像预处理、预测执行和结果评估等步骤。此外,项目结构包括模型定义、数据集、相关脚本、依赖库和项目文档,为用户提供安装和使用指南。该技术在新闻、法律和社交媒体等多个领域有潜在应用。 forgerylocCNN-py:基于多尺度卷积神经网络的图像伪造定位测试脚本

1. 多尺度卷积神经网络(MSCNN)在图像伪造检测中的应用

1.1 背景介绍

随着数字图像技术的快速发展,图像伪造变得日益普遍。这不仅威胁到个人隐私和安全,还可能对社会秩序和信任机制造成破坏。因此,图像伪造检测技术变得至关重要。多尺度卷积神经网络(MSCNN)正是在这一背景下,针对图像伪造检测领域提出的一种有效方法。

1.2 MSCNN技术原理

多尺度卷积神经网络(MSCNN)是通过在不同的尺度空间对图像进行处理,以捕捉从局部到全局的多层次特征信息。其核心思想是模拟人类视觉系统在不同视觉感知尺度上处理信息的方式,以此提升网络对于图像伪造区域的检测能力。MSCNN通常包含多个不同尺度的卷积层和池化层,这些层可以逐步抽象和提取图像中的关键特征。

1.3 MSCNN的应用前景

多尺度卷积神经网络在图像伪造检测上的应用前景广阔。它不仅能够增强模型对细微伪造痕迹的识别,还能提升检测速度和准确度,这对于网络安全、新闻传播、版权保护等多个行业具有重要的实际应用价值。通过不断优化和结合其他技术,如生成对抗网络(GANs),未来图像伪造检测技术有望实现更加智能和自动化的发展。

2. Python语言在深度学习项目中的实现

2.1 Python深度学习库的选择与应用

2.1.1 TensorFlow与Keras的选择理由

选择TensorFlow和Keras作为深度学习项目的库,有着诸多理由。TensorFlow由Google团队开发,拥有强大的社区支持、成熟的API和高效的计算性能。它支持分布式计算,可以在多GPU甚至多机器环境下运行,这使得处理大规模数据集和模型成为可能。

Keras则扮演了更为友好的前端角色,它能作为TensorFlow的高层封装,使得模型的定义和训练过程更加直观和简洁。Keras的设计哲学是易于使用,快速实验,它提供了一种简单而强大的方式来构建和部署深度学习模型。

同时,Keras和TensorFlow的结合,为研究者和开发者提供了灵活性和效率,Keras可以轻松切换到底层的TensorFlow,从而实现更复杂的操作和优化。

2.1.2 PyTorch的灵活性及优势

另一个重要的选择是PyTorch。PyTorch在研究社区中非常受欢迎,原因在于其出色的灵活性和直观的API设计。PyTorch支持动态计算图,能够即时计算梯度,这对于需要频繁尝试不同模型结构的研究者来说,是一个巨大的优势。

PyTorch的设计哲学接近于Python的原生风格,这使得其易于理解和使用。它也支持即时(JIT)编译,可以将模型转换为 TorchScript 格式,以提高部署的效率和性能。

此外,PyTorch与NumPy紧密集成,这意味着开发者可以利用他们对NumPy的熟悉来快速进行张量操作。它还拥有强大的社区支持和大量的开源项目资源,为深度学习研究和应用开发提供了丰富的工具和资源。

2.1.3 TensorFlow与PyTorch的对比与选择建议

在选择TensorFlow还是PyTorch时,开发者需要考虑项目需求、个人偏好以及团队协作习惯。TensorFlow更加适合大规模部署和企业级应用,而PyTorch则在快速原型设计和研究环境中表现出色。

通常,如果项目需要进行多GPU训练、跨平台部署或者是企业项目,TensorFlow是更合适的选择。然而,如果项目主要集中在研究和算法原型开发,并且需要频繁的模型调整和快速迭代,那么PyTorch可能会更受青睐。

在任何情况下,了解两种框架的优势和不足都是非常重要的。开发者可以根据具体的项目要求和自身的技能来做出明智的选择。

2.2 Python环境的搭建与配置

2.2.1 虚拟环境的搭建

使用Python进行深度学习项目时,虚拟环境的搭建是不可或缺的。虚拟环境可以创建隔离的Python运行环境,使得不同的项目可以使用不同的依赖库版本,避免了包之间的冲突。

最常用的虚拟环境搭建工具是 virtualenv 。安装 virtualenv 可以通过以下命令:

pip install virtualenv

安装完成后,可以通过以下命令创建一个新的虚拟环境:

virtualenv myenv

myenv 是虚拟环境的名称。在创建虚拟环境后,需要激活该环境:

source myenv/bin/activate  # 在Unix或MacOS上
myenv\Scripts\activate      # 在Windows上

2.2.2 依赖库的安装与版本管理

在虚拟环境激活后,就可以开始安装所需的依赖库了。对于深度学习项目,通常需要安装如下库:

  • TensorFlow或PyTorch
  • NumPy和SciPy
  • Pandas
  • Matplotlib或Seaborn(用于可视化)
  • OpenCV(用于图像处理)

例如,安装TensorFlow可以使用以下命令:

pip install tensorflow

使用虚拟环境的一个好处是,你可以轻松管理不同项目的依赖。如果需要在同一个项目中使用不同版本的库,可以为每个项目创建一个独立的虚拟环境。

为了避免版本冲突,推荐在项目的 requirements.txt 文件中列出所有依赖的精确版本。例如,一个简单的 requirements.txt 文件内容可能如下:

tensorflow==2.4.0
numpy==1.19.5
pandas==1.2.3
matplotlib==3.4.1

安装所有依赖时,只需运行:

pip install -r requirements.txt

这样做可以确保环境的一致性和可重复性,对于团队协作尤其重要。当新的团队成员加入时,他们只需运行上述命令即可安装所有必需的依赖库。

2.3 Python与深度学习的结合技巧

2.3.1 Numpy与Pandas在数据预处理中的应用

在深度学习项目中,数据预处理是一个非常关键的步骤。NumPy和Pandas是Python中处理数据的两大利器。

NumPy主要用于高效的数组操作。它提供了大量的数学函数库,以及生成和操作多维数组的功能。NumPy数组是进行深度学习模型训练的基石。例如,一个NumPy数组可以被直接输入到TensorFlow或PyTorch模型中。

下面是一个简单的NumPy数组操作示例:

import numpy as np

# 创建一个5x3的二维数组
a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15]])

# 数组形状的查询
print("Array shape:", a.shape)

# 获取数组的行和列
print("Rows:", a[0:2])
print("Columns:", a[:, 1])

Pandas是另一个强大的数据分析工具。它提供了丰富的数据结构和操作工具,非常适合处理表格型数据。Pandas中的 DataFrame 是一个二维的、大小可变的、潜在异质型的表格数据结构。它具有很多用于处理数据的内置函数。

下面是一个使用Pandas对数据进行预处理的示例:

import pandas as pd

# 创建一个简单的DataFrame
data = {'Name': ['John', 'Anna', 'Peter', 'Linda'],
        'Location': ['New York', 'Paris', 'Berlin', 'London'],
        'Age': [24, 13, 53, 33]
       }
df = pd.DataFrame(data)

# 查看前几行数据
print(df.head())

# 数据筛选
print(df[df['Age'] > 20])

在深度学习项目中,使用NumPy和Pandas可以有效地处理大规模数据集,进行数据清洗、转换和特征提取等操作,从而准备出适合深度学习模型训练的数据。

2.3.2 利用Python进行模型训练与测试的流程

在数据预处理完成后,接下来就是模型训练与测试的阶段。使用TensorFlow或PyTorch进行模型训练的过程,大致可以分为以下几个步骤:

  1. 定义模型 :使用深度学习框架提供的API定义模型结构。
  2. 配置训练参数 :设置优化器、损失函数和评价指标等。
  3. 训练模型 :利用训练数据对模型进行训练,并在验证集上进行验证。
  4. 评估模型 :使用测试集对模型性能进行评估。
  5. 模型保存与加载 :保存训练好的模型,以便将来使用或部署。

以TensorFlow为例,下面是一个简单的模型训练流程:

import tensorflow as tf
from tensorflow.keras import layers, models

# 定义一个简单的序列模型
model = models.Sequential([
    layers.Dense(64, activation='relu', input_shape=(input_size,)),
    layers.Dense(64, activation='relu'),
    layers.Dense(num_classes, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 拟合模型
model.fit(train_data, train_labels, epochs=5, batch_size=32)

# 评估模型
test_loss, test_acc = model.evaluate(test_data, test_labels)
print('Test accuracy:', test_acc)

在实际应用中,每一步都可能涉及到更多的细节和技巧。例如,在定义模型时,可能需要考虑模型的深度、宽度、层数、激活函数的选择等。在训练模型时,可能需要调整学习率、使用早停技术、应用数据增强等技术来防止过拟合和提高模型性能。

模型训练完成后,通常需要将其保存为一个文件,以便于将来部署或者进一步的使用。TensorFlow支持 SavedModel 格式和 HDF5 格式等多种模型保存方式。

# 保存模型
model.save('my_model.h5')

# 加载模型
from tensorflow.keras.models import load_model
new_model = load_model('my_model.h5')

通过上述步骤,Python配合TensorFlow或PyTorch可以实现高效的深度学习模型训练和测试过程。通过精心设计和优化这个流程,可以显著提升模型的性能和准确度,满足不同的业务需求。

3. 测试脚本的构建和作用

在现代软件开发过程中,自动化测试已成为确保产品质量的关键环节。测试脚本是自动化测试的核心,它们通过程序化的方式验证软件的预期行为。本章将深入探讨测试脚本的设计原则、架构、具体实现步骤以及如何进行评估与优化。

3.1 测试脚本的设计原则与架构

3.1.1 高内聚低耦合的设计理念

在设计测试脚本时,遵循高内聚低耦合的原则至关重要。高内聚意味着测试脚本中的每个模块应该专注于完成一个单一的任务,这样可以提高脚本的可读性和可维护性。低耦合则要求测试模块之间相互依赖的程度降到最低,这有助于在需求变更时能够迅速调整测试策略而不影响整体的测试流程。

一个良好的测试脚本设计应该能够轻松地增加、删除或修改测试用例而不影响其他部分。通过模块化设计,测试脚本可以适应项目的不同阶段和不断变化的需求。

3.1.2 测试脚本的模块化设计

模块化是将复杂系统分解为更易管理的独立部分的过程。在测试脚本中,这意味着将测试逻辑分割成单独的函数或类,每个都有清晰定义的输入和输出。例如,我们可以创建一个专门处理数据加载的模块,另一个负责执行测试用例,还有一个用于评估测试结果。

通过这种方式,测试脚本的每个模块可以独立地进行开发、测试和维护。如果一个模块出现故障,修复工作可以集中在这个模块上,不会影响到其他部分。模块化设计也支持代码的重用,减少了冗余和重复性工作。

接下来,让我们深入探讨测试脚本的具体实现步骤。

3.2 测试脚本的具体实现步骤

3.2.1 数据集的加载与预处理

数据集的加载与预处理是测试脚本运行的第一步。这涉及到从文件系统或其他数据源获取数据,并确保数据格式适用于测试环境。例如,对于图像数据,预处理可能包括调整大小、归一化像素值或应用数据增强技术以增加数据多样性。

在Python中,可以使用Pandas库来加载和处理数据集。Pandas提供了高效的数据结构和数据分析工具,使得数据预处理变得简单快捷。

import pandas as pd

# 加载数据集
data = pd.read_csv('dataset.csv')

# 数据预处理
# 假设我们要对某列进行归一化处理
data['feature_column'] = (data['feature_column'] - data['feature_column'].min()) / (data['feature_column'].max() - data['feature_column'].min())

# 可以选择保存处理后的数据集
data.to_csv('preprocessed_dataset.csv', index=False)

这段代码首先加载了名为 dataset.csv 的数据集,然后对名为 feature_column 的列进行了简单的归一化处理,并最终保存了处理后的数据集。

3.2.2 模型的训练与验证

模型训练是深度学习项目的核心环节。测试脚本需要包含模型训练的代码,以便在每次运行测试时都能够训练新的模型或复现之前的模型。此外,为了保证模型泛化能力,需要在独立的数据子集上进行验证。

在Python中,使用Keras或PyTorch等深度学习框架可以简洁地完成模型的定义、编译和训练过程。下面是一个使用Keras进行模型训练的简单示例:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from sklearn.model_selection import train_test_split

# 假设X和y是我们的特征数据和目标数据
X_train, X_test, y_train, y_test = train_test_split(data.drop('target', axis=1), data['target'], test_size=0.2)

# 定义模型结构
model = Sequential([
    Dense(64, activation='relu', input_shape=(X_train.shape[1],)),
    Dense(32, activation='relu'),
    Dense(1, activation='sigmoid')
])

# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))

在这个例子中,我们首先将数据集拆分为训练集和测试集。然后定义了一个简单的神经网络模型,并使用 fit 方法进行训练。

3.2.3 模型的保存与加载

为了便于测试不同版本的模型,并进行比较分析,需要有一个可靠的方法来保存和加载模型。在Keras中,可以使用 save 方法将整个模型结构、权重以及训练配置保存到单个文件中。同样的,加载模型也相当简单,只需使用 load_model 函数。

# 保存模型
model.save('my_model.h5')

# 加载模型
from tensorflow.keras.models import load_model
loaded_model = load_model('my_model.h5')

这种方式使得模型的共享和部署变得非常容易。

3.3 测试脚本的评估与优化

3.3.1 性能评估的标准与方法

评估测试脚本的有效性是至关重要的。性能评估的标准通常包括准确性、召回率、精确度和F1分数等。使用混淆矩阵和ROC曲线可以帮助我们更深入地了解模型的性能。

对于测试脚本来说,除了模型性能评估之外,还要考虑测试用例的覆盖率、测试脚本的执行效率和可维护性等。

3.3.2 测试脚本的优化技巧

测试脚本的优化可以从多个方面入手,包括减少测试数据的加载时间、提高测试用例的执行速度、优化内存使用等。例如,可以使用更高效的算法来处理数据,或者利用并发和异步编程技术来提高测试执行的并行性。

此外,代码审查和测试脚本的重构也是优化过程中的重要步骤。通过定期的代码审查,可以及时发现并解决潜在的问题,确保测试脚本的健壮性和准确性。

经过上述章节的讨论,我们可以看到测试脚本在深度学习项目中的核心作用,以及构建它们时应遵循的设计原则和实践。接下来的章节将会详细探讨项目的结构和资源管理,为读者提供更多的深度学习项目管理知识。

4. 项目结构和资源管理

在现代软件开发过程中,良好的项目结构和资源管理是提高开发效率和保障产品质量的关键。本章我们将探讨在深度学习项目中如何组织项目结构,选择合适的版本控制系统以及利用资源管理工具以实现高效的依赖和资源管理。

4.1 项目目录结构的设计

项目目录结构的设计对于保持代码的可读性和可维护性至关重要。一个结构清晰的项目目录可以帮助开发者快速定位和理解项目中的不同组件,同时也方便团队协作和项目扩展。

4.1.1 源代码与资源文件的组织方式

源代码是项目的核心,其组织方式应体现出项目的架构设计和功能模块划分。一般推荐按功能模块对源代码进行划分,每个模块作为一个独立的目录,包含该模块相关的代码文件和资源文件。例如,一个典型的项目结构可能包含如下目录:

project/
│
├── src/
│   ├── data/
│   ├── models/
│   ├── utils/
│   └── main.py
│
├── tests/
│   ├── test_models.py
│   └── test_utils.py
│
├── notebooks/
│   ├── data_analysis.ipynb
│   └── model_training.ipynb
│
├── configs/
│   ├── config.json
│   └── default.yaml
│
├── docs/
│   └── README.md
│
└── requirements.txt
  • src/ 目录包含所有的源代码文件。
  • data/ 目录存储数据预处理和加载脚本。
  • models/ 目录存储模型定义和训练脚本。
  • utils/ 目录包含通用工具和辅助函数。
  • main.py 是项目的主执行脚本。
  • tests/ 目录包含单元测试文件。
  • notebooks/ 目录存放用于数据分析和模型训练的Jupyter Notebook。
  • configs/ 目录用于存放配置文件。
  • docs/ 目录存放项目文档。
  • requirements.txt 列出所有依赖包及其版本信息。

4.1.2 文档与注释规范

文档和注释是项目质量的重要指标。文档详细说明了项目的安装、配置和使用方法,而注释则解释了代码中难以理解的部分,便于其他开发者理解和维护代码。

在编写文档时,应包含以下内容:

  • 安装说明:如何安装项目及其依赖。
  • 用户指南:如何使用项目的主要功能。
  • 开发指南:如何贡献代码到项目中。
  • API文档:每个模块、函数和类的详细说明。

注释规范方面,应遵循以下原则:

  • 重要函数和类的开头应有注释,说明其功能、参数和返回值。
  • 难以理解的代码逻辑应有注释。
  • 不要使用过时的注释,如废弃的代码行。

4.2 版本控制系统的选择与应用

版本控制系统是管理代码版本的工具,它可以帮助团队协作开发,同时记录项目的变更历史,便于追踪问题和恢复到旧版本。

4.2.1 Git的基本使用与团队协作

Git是目前最流行的版本控制系统,它提供了强大的版本控制功能,支持分布式开发模式。基本的Git操作包括:

  • git init 初始化仓库。
  • git clone 克隆仓库。
  • git add 将更改加入暂存区。
  • git commit 提交更改到本地仓库。
  • git push 将本地更改推送到远程仓库。
  • git pull 从远程仓库拉取更新。

在团队协作中,建议遵循以下最佳实践:

  • 定期提交更改到本地仓库,并及时推送到远程仓库。
  • 在提交前使用 git status git diff 检查更改。
  • 使用分支管理特性进行新功能开发或错误修复。

4.2.2 代码分支管理策略

分支管理策略对于项目的可维护性和开发效率至关重要。常见的分支管理策略有:

  • 主分支(main或master):存储项目的发布版本。
  • 开发分支(develop):进行日常开发,基于主分支创建。
  • 功能分支(feature/*):从开发分支创建,用于开发新功能。
  • 修复分支(hotfix/*):用于紧急修复主分支的错误。

使用分支时,需要遵守以下规则:

  • 不直接在主分支上进行开发。
  • 功能分支开发完成后,通过pull request合并到开发分支。
  • 主分支的更改应通过代码审查和自动化测试验证。

4.3 资源管理与依赖管理工具

资源管理和依赖管理是确保项目能够在不同环境一致运行的关键环节。依赖管理工具可以帮助我们声明和管理项目依赖,而资源管理则涉及其他如数据集、模型权重等非代码资源的管理。

4.3.1 依赖管理工具的选择与应用

在Python项目中, pip pipenv 是常见的依赖管理工具。

使用 pip 直接安装依赖到项目中:

pip install package_name

pipenv 提供了依赖文件和虚拟环境管理的功能:

pipenv install package_name

4.3.2 资源管理的最佳实践

资源管理的最佳实践包括:

  • 将资源文件放置在专门的目录,如 data/
  • 使用版本控制管理资源文件,确保版本的一致性。
  • 对于大型资源文件,考虑使用外部存储解决方案,如对象存储服务。
  • 记录资源文件的来源和使用条款,尤其是第三方数据集或模型权重。

在实际操作中,可以在项目配置文件中指定资源文件的路径,确保在不同环境中能够正确加载资源。

通过上述项目结构和资源管理方法的应用,项目可以变得更加模块化和可维护,同时也便于团队协作和资源共享。随着项目的持续发展,良好的项目管理将带来长期的效益。

5. 图像伪造检测技术的实际应用前景

5.1 图像伪造检测技术的现实意义

随着数字媒体技术的不断进步,图像伪造变得越来越普遍,尤其在社交媒体、新闻报道、法律证据等领域造成了极大的挑战。图像伪造不仅影响信息真实性,还可能引发社会信任危机,因此,图像伪造检测技术的现实意义显得尤为突出。

5.1.1 信息真实性的挑战与需求

信息真实性是社会稳定与个人决策的重要基石。在数字化时代,图像作为传递信息的载体,其真实性同样不容忽视。图像伪造技术的快速发展,使得虚假图像几乎可以达到以假乱真的程度,这对社会的信息安全和人们的认知安全构成威胁。因此,开发高效的图像伪造检测技术是满足公众对信息安全需求的迫切需要。

5.1.2 技术在不同领域的应用潜力

图像伪造检测技术具有广泛的应用前景。在新闻业,它可以帮助鉴别新闻图片的真实性;在司法领域,可以作为证据验证工具;在个人层面,可以增强社交媒体用户对信息的辨识能力。此外,在艺术创作和版权保护方面,该技术也能发挥重要作用,帮助打击盗版和维护原创作品的权益。

5.2 未来发展方向与挑战

随着技术的发展,图像伪造检测领域正面临新的机遇与挑战。行业专家、研究人员和技术开发者需要共同面对并解决这些挑战。

5.2.1 技术进步带来的新机遇

深度学习技术的不断进步为图像伪造检测提供了新的可能性。例如,生成对抗网络(GANs)在图像生成方面展现出强大的能力,这些技术也能被反向应用来检测伪造图像。研究人员可以利用这些先进算法开发出更精确的检测模型,不仅能够识别已知的伪造手法,还能对抗未知的伪造技术。

5.2.2 法律法规与伦理问题的考量

尽管技术不断进步,法律法规和伦理问题也需要同步考虑。图像伪造检测技术的普及可能会引发隐私和版权等方面的担忧。例如,技术可能被用于不正当的监控或侵犯他人的隐私权。因此,制定合理的法律法规和伦理指南,确保技术的正当使用,是技术发展过程中不可忽视的方面。

5.3 深度学习与图像伪造检测的融合趋势

深度学习技术与图像伪造检测技术的结合是大势所趋。从算法创新到实际应用,两者融合的趋势正推动着整个行业的发展。

5.3.1 算法创新与优化路径

算法创新是提高图像伪造检测准确性的关键。研究人员需要探索新的模型架构和训练策略,以提高检测模型的鲁棒性和准确性。同时,也需要考虑模型的轻量化,以便于在各种设备上部署和使用。优化路径包括但不限于模型剪枝、知识蒸馏和量化等技术。

5.3.2 跨学科合作的重要性

跨学科合作能够加速图像伪造检测技术的发展。计算机科学、信息安全、法律、心理学等多个领域的专家应联合起来,共同研究和应对图像伪造带来的问题。这种合作不仅能丰富研究视角,还能确保技术的应用符合社会伦理和法律规定,实现可持续发展。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本项目名为forgerylocCNN-py,专注于运用多尺度卷积神经网络(MSCNN)技术来识别图像中被篡改或伪造的区域。这种技术在数字媒体安全领域尤为重要,有助于检测图像的潜在伪造部分。项目以Python语言编写,利用深度学习库,如TensorFlow和PyTorch,提供了一个测试脚本以验证模型性能。脚本包含加载模型、输入图像预处理、预测执行和结果评估等步骤。此外,项目结构包括模型定义、数据集、相关脚本、依赖库和项目文档,为用户提供安装和使用指南。该技术在新闻、法律和社交媒体等多个领域有潜在应用。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值