管家的忠诚
- 23%
- 1000ms
- 65536K
老管家是一个聪明能干的人。他为财主工作了整整10年,财主为了让自已账目更加清楚。要求管家每天记k次账,由于管家聪明能干,因而管家总是让财主十分满意。但是由于一些人的挑拨,财主还是对管家产生了怀疑。于是他决定用一种特别的方法来判断管家的忠诚,他把每次的账目按1,2,3…编号,然后不定时的问管家问题,问题是这样的:在a到b号账中最少的一笔是多少?为了让管家没时间作假他总是一次问多个问题。
输入中第一行有两个数m,n表示有m(m< =100000)笔账,n表示有n个问题,n< =100000。 第二行为m个数,分别是账目的钱数 后面n行分别是n个问题,每行有2个数字说明开始结束的账目编号。
输出文件中为每个问题的答案。具体查看样例。
样例输入
10 3 1 2 3 4 5 6 7 8 9 10 2 7 3 9 1 10
样例输出
2 3 1
初学线段树~基础题
//管家的忠诚
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
#define M 100000
int m,n;
int ans[M];
struct Node
{
int l,r,w;
}t[4*M + 1];
void build(int k,int l,int r)
{
t[k].l = l;
t[k].r = r;
t[k].w = 0;
if(l==r){
return;
}
int mid = (l+r) / 2;
build(k*2,l,mid);//左子树
build(k*2+1,mid+1,r);//右子树
//t[k].w = min(t[k*2].w,t[k*2+1].w);//更新区间最小值
}
void update(int k,int p,int v)
{
if(t[k].l==p&&t[k].r==p){
t[k].w = v;
return;
}
int mid = (t[k].l + t[k].r) / 2;
if(p <= mid)
update(k*2,p,v);
else update(k*2+1,p,v);
//更新
t[k].w = min(t[k*2].w,t[k*2+1].w);//更新区间最小值
}
//查询区间最小值
int query(int k,int l,int r)
{
//若该树包含在区间内
if(l<=t[k].l&&t[k].r<=r)
{
return t[k].w;
}
int mid = (t[k].l+t[k].r) / 2;
//区间包含在左子树
if(r<=mid)
return query(k*2,l,r);
//去捡包含在右子树
if(l>mid)
return query(k*2+1,l,r);
//都不是 比较返回最小值
return min(query(k*2,l,r),query(k*2+1,l,r));
}
int main()
{
scanf("%d%d",&m,&n);
build(1,1,m);
for(int i = 1; i <= m; i++){
int value;
scanf("%d",&value);
update(1,i,value);
}
for(int i = 1; i <= n; i++){
int l,r;
scanf("%d%d",&l,&r);
ans[i-1] = query(1,l,r);
}
for(int i = 0; i < n; i++){
if(i) printf(" ");
printf("%d",ans[i]);
}
return 0;
}