
直线与椭圆、双曲线、抛物线中每一个曲线的位置关系都有相交、相切、相离三种情况,从集合角度可分为三类:无公共点,仅有一个公共点及有两个相异共欧诺个电。对于抛物线来说,平行与对称的直线与抛物线相较于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个焦点,但并不相切。
直线和椭圆、双曲线、抛物线中每一个曲线的公共点问题,可以转化为它们的方程所组成的方程组求解问题,从而用代数方法判断直线与曲线的位置关系。
解决直线和圆锥曲线的位置关系的解题步骤是:
1、直线的斜率不存在,直线的斜率存在
2、联立直线和曲线的方程组
3、讨论类一元二次方程
4、一元二次方程的判别式
5、韦达定理,同类坐标交换
6、同点纵横坐标交换
7、x,y,k(斜率)的取值范围
8、目标;弦长,中点,垂直,角度,向量,面积,范围等等
下面老师通过常见题型及思维规律和解题分析来详细讲解有关直线和圆锥曲线的知识点。
篇幅限制,内容仅做展示,完整版可在文末获取。













由于文章篇幅限制,完整版内容免费获取方式如下:
关注后,发送私信“学习”即可免费获取。
此外,老师还整理了如数学“选题秒杀技巧”、十分钟搞定选择题”、“解析几何必杀技”等,只要抓住核心考点,必考、常考知识清单,想知道高中数学常考、必考知识清单都有什么吗?也可以关注后私信来免费获取。