2019-10-14 无约束条件的泛函极值问题的举例说明

概念说明

泛函:存在函数 x ( t ) x(t) x(t),同时另一函数 J J J依赖于函数 x ( t ) x(t) x(t),表示为 J ( x ) J(x) J(x),就称 J ( x ) J(x) J(x) x ( t ) x(t) x(t)的泛函。

宗量 x ( t ) x(t) x(t) J ( x ) J(x) J(x)的宗量。

宗量变分 x ( t ) x(t) x(t)的变分指宗量的微小改变,即 δ x ( t ) \delta x(t) δx(t),可以任意取值。

泛函的一阶变分:宗量改变之后,会引起泛函的改变,就说明泛函 J ( x ) J(x) J(x)连续的,此改变量为泛函增量。往往设 J ( x ) J(x) J(x) x ( t ) = x ∗ ( t ) x(t)=x^*(t) x(t)=x(t)可微,仅利用泛函增量的线性主部,即为一阶变分 δ J ( x ∗ , δ x ) = J ′ ( x ∗ ) δ x \delta J(x^*,\delta x)=J'(x^*)\delta x δJ(x,δx)=J(x)δx

固定边界的泛函极值求解的一般形式

往往泛函极值问题的求解的一般形式是:
J = ∫ t 0 t f F [ x ( t ) , x ˙ ( t ) , t ]   d t J=\int_{t_0}^{t_f} F[x(t),\dot x(t),t]\, \mathrm dt J=t0tfF[x(t),x˙(t),t]dt
假定 x ( t ) x(t) x(t)为一维变量,在 t ∈ [ x ( t 0 ) , x ( t f ) ] t\in[x(t_0),x(t_f)] t[x(t0),x(tf)]区间二次可导,在已知起点和终点的情况下,确定使得目标函数 J ( x ) J(x) J(x)达到最小时的 x ( t ) x(t) x(t)的轨迹。

举个栗子

1. 题目

题目来源:知乎作者:清雅白鹿记
两点之间直线距离最短?二维平面空间,从坐标原点 ( 0 , 0 ) (0,0) (0,0)到点 ( a , b ) (a,b) (a,b)的连接曲线是 x = x ( t ) x= x(t) x=x(t),求最短距离和路径函数。
在这里插入图片描述
上图中直观来看肯定是红线最短,但是需要用变分法的思路进行求解。

2. 求解

曲线的弧长微元是 d J = ( d x ) 2 + ( d t ) 2 = ( x ˙ ) 2 + 1   d t \mathrm dJ=\sqrt{(\mathrm dx)^2+(\mathrm dt)^2}=\sqrt{(\dot x)^2+1}\,\mathrm dt dJ=(dx)2+(dt)2 =(x˙)2+1 dt那么总弧长为 J = ∫ 0 a ( x ˙ ) 2 + 1   d t J=\int_0^a \sqrt{(\dot x)^2+1}\,\mathrm dt J=0a(x˙)2+1 dt边界条件为 x ( 0 ) = 0 x(0)=0 x(0)=0 x ( a ) = b x(a)=b x(a)=b

变分法求解:
J ( x ) = ∫ 0 a ( x ˙ ∗ ( t ) + δ x ˙ ( t ) ) 2 + 1   d t J(x)=\int_0^a \sqrt{(\dot x^*(t)+\delta \dot x(t))^2+1}\,\mathrm dt J(x)=0a(x˙(t)+δx˙(t))2+1 dt
根据泛函极值存在的必要条件:
δ J = J ′ ( x ) ∣ x = x ∗ δ x = 0 \delta J=J'(x)|_{x=x^*}\delta x=0 δJ=J(x)x=xδx=0 δ J = ∫ 0 a x ˙ ( t ) 1 + x ˙ 2 ( t ) ∣ x ˙ = x ˙ ∗ δ x ˙   d t = 0 \delta J=\int_0^a\frac{\dot x(t)}{\sqrt{1+\dot x^2(t)}}|_{\dot x=\dot x^*}\delta \dot x\, \mathrm dt=0 δJ=0a1+x˙2(t) x˙(t)x˙=x˙δx˙dt=0
然后利用分部积分,由于在起点和终点, δ x \delta x δx均为0,所以上式变为:
δ J = − ∫ 0 a δ x d x ˙ ( t ) 1 + x ˙ 2 ( t ) ∣ x ˙ = x ˙ ∗ = 0 \delta J=-\int_0^a\delta x \mathrm d\frac{\dot x(t)}{\sqrt{1+\dot x^2(t)}}|_{\dot x=\dot x^*}=0 δJ=0aδxd1+x˙2(t) x˙(t)x˙=x˙=0
由于 δ x \delta x δx可以任意取值,因此
x ˙ ∗ ( t ) 1 + x ˙ ∗ 2 ( t ) = c 1 \frac{\dot x^*(t)}{\sqrt{1+\dot x^{*2}(t)}}=c_1 1+x˙2(t) x˙(t)=c1
在实数范围内可以计算出
x ˙ ∗ ( t ) = c 2 \dot x^*(t)=c_2 x˙(t)=c2

x ∗ ( t ) = c 2 t + c 3 x^*(t)=c_2t+c_3 x(t)=c2t+c3
带入边界条件 x ( 0 ) = 0 x(0)=0 x(0)=0 x ( a ) = b x(a)=b x(a)=b
则有 x ∗ ( t ) = b a t x^*(t)=\frac{b}{a}t x(t)=abt
最小长度 J = a 2 + b 2 J=\sqrt{a^2+b^2} J=a2+b2

结论

当无约束的泛函极值问题的求解的形式是:
J = ∫ t 0 t f F [ x ( t ) , x ˙ ( t ) , t ]   d t J=\int_{t_0}^{t_f} F[x(t),\dot x(t),t]\, \mathrm dt J=t0tfF[x(t),x˙(t),t]dt
假定 x ( t ) x(t) x(t)为一维变量,在 t ∈ [ x ( t 0 ) , x ( t f ) ] t\in[x(t_0),x(t_f)] t[x(t0),x(tf)]区间二次可导,在已知起点和终点的情况下,确定使得目标函数 J ( x ) J(x) J(x)达到最小时的 x ( t ) x(t) x(t)的轨迹。

解为:
∂ F [ x ∗ , x ˙ ∗ , t ] ∂ x − d d t [ ∂ F [ x ∗ , x ˙ ∗ , t ] ∂ x ˙ ] = 0 \frac{\partial F[x^*,\dot x^*,t]}{\partial x}-\frac {\mathrm d}{\mathrm dt}[\frac {\partial F[x^*,\dot x^*,t]}{\partial \dot x}]=0 xF[x,x˙,t]dtd[x˙F[x,x˙,t]]=0
(注:不够严谨的地方望指正,谢谢?)

  • 7
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值