# Part 1

For each of the four datasets…

• Compute the mean and variance of both x and y
• Compute the correlation coefficient between x and y
• Compute the linear regression line: $y=\beta 0+\beta 1x+ϵ$$y = \beta0 + \beta1x + \epsilon$

hint: use statsmodels and look at the Statsmodels notebook

import random
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
import statsmodels.formula.api as smf

sns.set_context("talk")

#计算x和y的均值和方差
x_avg = anascombe['x'].mean()
y_avg = anascombe['y'].mean()
x_var = anascombe['x'].var()
y_var = anascombe['y'].var()

print('Average of x =', x_avg)
print('Average of y =', y_avg)
print('Variance of x =', x_var)
print('Variance of y =', y_var)

#计算x和y的相关系数
corr = anascombe['x'].corr(anascombe['y'])
print('Correlation coefficient between x and y =', corr)

#计算线性回归
est = sm.OLS(anascombe['y'], X)
est = est.fit()
print('y = %.3f + %.3fx + ϵ'%(est.params[0], est.params[1])) 

# Part 2

Using Seaborn, visualize all four datasets.

hint: use sns.FacetGrid combined with plt.scatter

#数据可视化
sns.FacetGrid(data = anascombe, col = 'dataset', col_wrap = 2).map(plt.scatter, 'x', 'y')
plt.show()  

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120