卸料装置弹性零件的计算方法_第三篇:冲压模具结构设计学习--退料零件、模架零件...

退料装置包括卸料、推件和顶件装置。其作用是当冲模完成一次冲压之后,把制件或废料从模具工作零件上卸下来,以便冲压工作继续进行。

6.1 卸料装置的结构 :

1、刚性卸料 (固定卸料板结构 )

结构形式:1)整体式卸料板 ;2)组合式卸料板;

3)悬臂式卸料板 ;4)拱形卸料板3da1fd8f59b433e115a9b3c989d267eb.png

2、弹性卸料

装置组成:弹压卸料板,橡皮或弹簧,卸料螺钉等(一般装在上模)。

弹压卸料板具有卸料和压料的双重作用 。(用在冲裁料厚在1.5mm以下的板

3、废料切刀卸料装置

应用:落料件尺寸较大或板料厚度较大,卸料力大

6.2  推件和顶件装置的结构 :

目的:都是从凹模中卸下冲件或废料。

1)推件装置 (刚性 )

组成:打杆、推板、连接推杆和推件块

特点:顶件力大,工作可靠

2)顶件装置 (弹性 )

组成:顶杆、顶件杆和顶件块

特点:除顶件以外,一般还最起压料作用。

6.3 弹性元件  (弹簧和橡皮 ):

1)弹簧的选用与计算

2)橡胶的选用与计算

橡胶一般材料为聚胺酯橡胶,俗称优力胶。(主要用于冲裁模中 )

橡胶的高径比一般在0.5至1.5之间选取  。

3)橡胶与弹簧的安装孔

(1)弹簧固定孔深度应至少保证有一至两圈弹簧在孔中。弹簧孔的直径比弹簧大1mm.

(2)橡胶如果采用中间空心的结构,可以不设计安装孔,设计孔时其孔径比橡胶大3mm。

6.4 卸料螺钉 :

卸料螺钉如果采用专用的螺钉则结构如图2-70示。卸料螺钉的大小一般在M8-M12之间选用。

注意:卸料螺钉应对称分布,工作长度要严格一致

e8cd3f7212fe30b0929eeaf009f85757.png

7.1 模架 (承受冲压过程的全部载荷 ):

组成:上、下模座和导向零件

导柱模架的基本形式 :

① 对角导柱模架           ②后侧导柱模架

③ 中间导柱模架           ④ 四导柱模架

7.2 导向零件 :

冲裁模的导向零件主要有导柱与导套、导板等 。(目前主要用导柱与导套结构 )

导柱与下模座采用过盈配合,导套与上模座过盈配合。

7.3 模架零件:

冷冲模的模架零件主要包括模座、模柄、垫板和凸模固定板等。

1.模座 (标准模架 )

2.模柄(Q235,无须淬火处理 )

模柄的轴线应位于模具的压力中心(冲压合力的作用点)重合 。

结构形式 :

1)压入式模柄 (Ⅰ型)                  2)旋入式模柄 ( Ⅱ型)

3)螺钉固定式模柄 ( Ⅲ型)          4)螺钉联接式模柄 ( Ⅳ型)

3.固定板 (Q235或45号钢,无须淬火处理 )

凸模、凹模固定板主要用于小型凸模、凹模或凸凹模等工作零件的固定。

4.垫板  (T7或T10A钢,热处理后硬度HRC43~48 )

作用:是承受凸模或凹模的压力,防止过大的冲压力在上、下模座上压出凹坑(图2-78),影响模具

正常工作。15cb13da2ca13830189a55ca19701e9d.png

f3a7e7c965bcc814432ed137c565074c.png

7.4 紧固零件 (销钉和螺钉 ):

主要起定位、连接、拉紧冲模零件的作用。

【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化网格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算机图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其高效性和准确性在计算机图形学中广泛应用,尤其在实时渲染和三维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算机相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践机会。无论是作为学习编程的入门材料,还是作为深入研究计算机图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比分析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算机图形学领域中取得更深入的研究成果。
内容概要:本文详细介绍了利用改进粒子群算法(PSO)进行混合储能系统(如电池与超级电容组合)容量优化的方法。文中首先指出了传统PSO易陷入局部最优的问题,并提出通过非线性衰减惯性权重、引入混沌因子和突变操作等方法来改进算法性能。随后,作者展示了具体的Python代码实现,包括粒子更新策略、适应度函数设计以及边界处理等方面的内容。适应度函数不仅考虑了设备的成本,还加入了对设备寿命和功率调节失败率的考量,确保优化结果的实际可行性。实验结果显示,在风光发电系统的应用场景中,改进后的PSO能够在较短时间内找到接近全局最优解的储能配置方案,相比传统方法降低了系统总成本并提高了循环寿命。 适合人群:从事电力系统、新能源技术研究的专业人士,尤其是对储能系统优化感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于需要对混合储能系统进行容量优化的场合,旨在提高储能系统的经济效益和使用寿命,同时保证供电稳定性。通过学习本文提供的理论知识和代码实例,读者能够掌握改进粒子群算法的应用技巧,从而应用于实际工程项目中。 其他说明:文中提到的所有代码均为Python实现,且已在GitHub上提供完整的源代码链接(尽管文中给出的是虚拟地址)。此外,作者还计划将改进的PSO与其他优化算法相结合,进一步提升求解复杂问题的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值