多边形面积这一单元的例题5教材安排了不规则图形面积的估算,不规则图形不像规则图形,可以找到面积公式,所以只能估算它的面积,以此为契机增强估算意识,培养估算的策略。估算的策略最重要的是为要估算的事物找到一种合适的测量标准,然后利用标准去估计,教材呈现了两种估计的方法:方法一是数格子,方法二是转化为规则图形。
课前讨论
在组内讨论时,因为这类问题需要学生借助图形自主研究,还要呈现作品,所以一开始我们计划借助课件和活动单去引领学生的学习。但是我是个怕麻烦的人,制作课件不如呈现学生原生态的作品,而教材中的习题非常丰富,可以进行重组优化教学,不必再重新设计活动单。所以这节课我果断地舍弃了以往的课件,打开书本,巧用叶子图和课后的练习题,上出了让学生体验更加深刻的一堂数学面积估算课。
教学策略
一、 呈现书本例题,感悟估计方法
(1)要估计这片叶子的面积,你有什么好方法?
生1:数格子,满格按1格数,不满格按半格数。
生2:可以转化为学过的图形面积。
(2)在图中用数格子的方法估计图形的面积,满格打√,不满格可以打○。
生数完列式:18+18÷2=27cm2
追问:后面的18为什么除以2?
(3)书本是转化为平行四边形,你觉得还可以转化为什么图形?
生:长方形
师:请你转化为和它面积接近的长方形
(4)呈现不同的作品进行教学
①作品1:斜着的长方形。
分析:这样的长方形不好算,明确估算的原则是转化的图形要好计算
②作品2:太大的长方形
分析:这样长方形把整个图包进去了,估计过大了。
③作品3:估计较准确的长方形
分析:让学生先欣赏它的优点,明确突出的部分可以去弥补框里的空白部分,通过移多补少,使估计更加准确。
(5)小结:估计的要素,既要好算,又要尽可能准确。
二、重组习题,巩固和优化方法
(1)计算阴影部分的面积。
可以尝试数格法;也可以转化为长方形的面积。
小结:格子较少时,可以用数格法,也可以用转化法。
(2)估计这个池塘的面积。
先明确格数较多时,用转化法更方便;接着再比较,两种估算的结果都正确,哪一种会更准确些?学生感知图形更“集中”的更准确,在估计的过程要根据画的图进行不断地调整。
(3)估算组合图形面积。
教材中的问题是计算阴影部分的面积,为了贴合本节课的学习内容,让后进的学生有更多的方法可以选择,我把这道题放在练习的最后,放手让学生自主探索从估算走向精算的组合图形面积方法。学生呈现了几种不同的策略:数格子;转化为长方形或正方形;还有两种不同的分割法。不同的方法逐次呈现,再汇报交流,在过程中不断优化,最终从估算的浅层思维向尝试分割的深层思维过渡。
结 语
估算这节课之所以难上,是因为借助课件的直接呈现学生很难有自我的感悟,它需要学生通过学习材料的充分体验和方法的不断对比优化才能真正学习到估算的策略。所以在这节课中,虽然教材已经呈现了估算叶子面积的方法,而我在教学中把方法细化,比如数格子标上不同的符号,计算的过程充分理解除以2的道理,比如在转化的过程中对不同的长方形进行思辩,对优化后的长方形数格子采取划线的方式避免数错,接着对练习根据既定目标进行重组,图1巩固新知,图2方法优化,图3拓展提升,环环相扣,目标清晰,让学生经历估算不规则图形面积的全过程,体会估算策略和方法的多样性,积累数学活动经验。