数格子算面积的方法_数格子估算面积与数格点估算面积

本文探讨了在小学数学教育中如何利用数格子和数格点估算不规则图形的面积,指出数格点估算方法在精确性和启发思维上的优势,并介绍了皮克定理在估算中的应用,旨在丰富估算策略,提升学生空间想象和逻辑推理能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

王军

《义务教育数学课程标准(2011年版)》对于估算有明确的要求,即“理解估算的意义”“会用方格纸估计不规则图形的面积”。很多教师认为估算是在不要求精确计算的情况下使用的一种能快捷求出近似结果的计算方法,或者是检验精算结果是否正确的验算方法。但是他们没有意识到,估算更重要的功能在于培养学生的数感、观察能力、空间想象能力和逻辑推理能力。

一、教材中对曲线图形面积的估算

江苏教育出版社小学数学教材五年级上册第22页有这样一道例题:

例11.下面是某自然保护区一个湖泊的平面图,如图1,(每个小方格表示1公顷)。你能估计这个湖泊的面积大约是多少公顷吗?

通过数格子来估算,55个整格,34个非整格,非整格的算半格,这个湖泊的面积大约是72公顷。

这个图形面积的准确值应该在55与89之间,上述估算方法不够精确,思维含量偏低,也较难引起学生的兴趣,有没有其他的估计方法呢?

二、数格点估算面积

1.数格点算面积的方法介绍

通过阅读文献,我们认为,有一种数格点计算多边形面积的方法可以用来估算曲线图形的面积。这种方法起源于格点多边形。所谓格点多边形,就是说这个多边形的顶点全是格点,如图2:

设S为图2的面积,L是边界上的格点数(组成格子的横竖线的交叉点正好在图形的边上),N是内部格点数(交叉点在图形的内部),容易计算出图形面积是11。如果联系到图形的L=6及N=9,还有+N-1的关系式成立,这种方法是否具有一般性呢?

2.数格点估算面积方法合理性的说明

数格子的估计方法学生应该是可以理解的,但是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值