乘法原理的例题和答案_【高中数学选修23研读】“第一章:计数原理”

第一章:计数原理

【导入例子】

核糖核酸(RNA)分子由碱基按一定的顺序排列而成。已知碱基有4种,由成百上千个碱基组成的RNA分子的种数非常巨大你知道它是怎么算出来的吗?

计算机中的字符由二进制表示,英文字母和汉字所需要的字节数不一样,你知道为什么吗?

【概述】

汽车牌照一般从26个英文字母、10个阿拉伯数字中选出若干个,并按照适当顺序排列而成,随着人们生活水平的提高,家庭汽车拥有量迅速增长,汽车牌照号码需要扩容另外,许多车主还希望自己的牌照“个性化”,那么,交通管理部门应如何确定汽车牌照号码的组成方法,才能满足民众的需求呢?这就需要“数出”某种汽车牌照号码组成方案下所有可能的号码数,这就是计数。日常生活、生产中类似的计数问题大量存在。例如,幼儿会通过一个一个地数数的方法,计算自己拥有玩具的数量;学校要举行班际篮球比赛,在确定赛制后,体育组的老师要算一算共需要举行多少场比赛;用红、黄、绿三面旗帜组成航海信号,颜色的不同排列表示不同的信号,共可以组成多少种不同的信.....

虽然用列举所有各种可能性的方法,即一个一个地去数,可以求出相应的数,但当这个数很大时,列举的方法很难实施本章所关心的是如何能不通过一个一个地数而确定出这个数。

在小学我们学了加法和乘法,这是将若干个“小的”数结合成“较大”数的最基本技巧。这种技巧经过推广就成了本章将要学习的分类加法计数原理和分步乘法计数原理,这是解决计数问题的两个最基本、最重要的方法。应用这两个计数原理,我们可以得到两类特殊计数问题的计数公式,即排列数公式和组合数公式,应用它们就可以方便地解决一些计数问题。作为计数原理与计数公式的一个应用,本章我们还将学习在数学上有广泛应用的二项式定理。【开篇的理解】

1)多个例子(RNA、计算机、汽车牌照、生活中的计数例子等)激发学生的兴趣和对计数原理的求知欲;

2)指出列举法是很自然的计数方法,但缺点明显,正是如此才引起人们寻求它法;

3)通过对数的加法和乘法的巧妙推广,获得了本章将要学习的计数原理;

4)介绍本章学习内容。

1.1 分类加法计数原理与分步乘法计数原理

1)分类加法计数原理

1.1)设置“思考(座位编号的种数)”导入课题;

1.2)引导学生分析思考问题,并给出答案;

1.3)设置“探究”引导学生思考这个问题的特征;

1.4)学生发现问题中的关键字“或”;设置“疑问”引导学生举出生活中的其他实例;

1.5)结合学生的发现,给出分类加法计数原理的内涵;强调两类中的方案互不相同;

1.6)编排例题帮助学生理解加法计数原理;

1.7)设置“探究”引导学生将加法计数原理推广到一般情况;

2)分步乘法计数原理

2.1)设置“思考”引导学生思考用另一种形式给座位编号的种数;

2.2)引导学生用“树形图”分析该问题,并给出答案;

2.3)设置“探究”引导学生思考这个问题的特征;

2.4)学生发现问题中的关键字“和”;

2.5)结合学生的发现,给出分步乘法计数原理的内涵;强调前一步的选择不会影响后一步;

2.6)编排例题帮助学生理解乘法计数原理;

2.7)设置“探究”引导学生将乘法计数原理推广到一般情况;

3)编排例题进一步帮助学生巩固这两条计数原理;

4)引导学生总结这两条原理的区别与联系:这两个原理回答的都是有关做一件事的不同方法的种数问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法互相依存,只有各个步骤都完成才算做完这件事;

5)练习;

6)编排例题让学生体会这两条原理的综合运用;体会计数原理在实际生活中的作用;用所学知识回答【概述】中的问题;

7)设置“思考”引导学生结合以上例题归纳利用这两条原理解决计数问题的方法;

8)引导学生归纳:最重要的是在开始计算之前要进行仔细分析——需要分类还是需要分步;分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数;分步要做到“步骤完整”——完成了所有步骤,恰好完成任务,当然步与步之间要相互独立,分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数;

9)设置“思考”引导学生从乘法运算是加法运算的简化角度,思考乘法计数原理和加法计数原理是否也有这种关系;

10)课后习题。

本节理解:计数就是数数。原理是在大量观察、实践的基础上,经过抽象、归纳、概括而得出具有普遍意义的基本规律。两个计数原理不仅是继续学习排列、组合和二项式定理的理论依据,更是处理计数问题的两种基本思想方法。

从认知基础的角度看,两个计数原理实际上是学生从小学就开始学习的加法运算与乘法运算的拓展应用,是体现加法与乘法运算相互转化的典型例证。

从思想方法的角度看,运用分类加法计数原理解决问题是将一个复杂的计数问题分解为若干“类别”,再分类解决;运用分步乘法计数原理解决问题则是将一个复杂的计数问题分解为若干“步骤”,先对每个步骤分类处理,再分步完成。综合运用两个计数原理就是将综合问题分解为多个单一问题,再对每个单一问题各个击破。也就是说,两个计数原理的灵魂是化归与转化的思想、分类与整合的思想和特殊与一般的思想的具体化身。

从数学本质的角度看,以退为进,以简驭繁,化难为易,化繁为简,是理解和掌握两个计数原理的关键,运用两个计数原理是知识转化为能力的催化剂。

【探究与发现】

本文是引导学生运用所学的两条计数原理探究子集个数的。文章开始引导学生思考一些具体的集合,通过枚举归纳出一般规律,然后让学生自己沿着这条思路进行下去。

随后文章着重从正文中的乘法原理角度出发,引导学生分析问题获得答案。在此期间设置“疑问”引导学生据此体会将空集和集合自身规定为子集的用意。

文后设置“思考”引导学生从其他角度给出答案。比如加法计数原理、数学归纳法等。

【章节习题1.1】

1.2排列与组合

1.2.1排列

1)设置“探究(引导学生思考上一节例题9的简便计数方法)”导入课题;

2)创设“问题情境”引导学生从简单入手考虑

2.1)问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动,有多少种不同的选法?

2.2)问题2:从1, 2, 3, 4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?

2.3)引导学生利用分步乘法计数原理给出答案;

2.4)引导学生进一步分析问题将问题归结为:从几个不同元素中任取多个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?

3)设置“思考”引导学生分析以上两个问题的共同特点,并将其推广;

4)结合学生的思考,给出排列的概念;设置“思考”引导学生归纳排列的特征;

5)在教师的帮助下,学生归纳出:两个排列相同,当且仅当两个排列的元素完全相同,且元素的排列顺序也相同;

6)给出排列数的概念及其符号,并用排列数给出以上两个问题的解答;

7)设置“探究”引导学生思考:从n个元素中取出2、3、m个元素的排列数;

8)引导学生“类比”问题1和2中的思路,将探究中的问题转化为“填数的填法种数”,再利用分步乘法原理进行解答;

9)结合学生的探究,给出排列数的计算公式——排列数公式;设置“疑问”引导学生概括排列数公式的特点;

10)给出全排列的概念和计算公式,以及阶乘的记号能n!;规定0!=1;

11)编排例题帮助学生理解排列计数问题的解决过程和排列数的计算公式

11.1)例题1帮助学生理解排列数的计算公式;引导学生根据例题1的结果归纳出:排列数等于两个阶乘数之商;

11.2)例题2帮助学生理解排列计数问题的解决过程;

11.3)例题3帮助学生理解排列计数与分步乘法计数的区别;

11.4)例题4帮助学生理解帮助学生体会分步加法计数、分类乘法计数、排列计数的综合应用;体会从多个角度看待问题;

12)引导学生体会引进排列数的作用:更加简便、快捷地求解“从n个不同元素中取出m(m≤n)个元素的所有排列的个数”这类特殊的计数问题;

13)课后习题。

1.2.2组合

1)设置“探究(引导学生思考从3名学生中选2名参加活动的选法,并思考这一计数问题与上一节问题1的区别)”导入课题;

2)引导学生分析探究的问题;

3)结合学生的探究,给出组合的概念;

4)设置“思考”引导学生思考排列与组合的联系与区别;

5)在教师的帮助下,学生归纳出:

5.1)联系:两者都是从“n个不同元素中取出m(m≤n)个元素”;

5.2)区别:排列与元素的顺序有关,组合与元素的顺序无;

6)引导学生“类比”排列数给出组合数的概念和记号;

7)引导学生思考如何计算组合数;给出一些简单例子让学生体会;

8)设置“探究”引导学生通过组合与排列的联系入手思考组合数的计算;

9)引导学生分析特例(从4个元素取出3个元素的排列数与组合数)发现:组合数可由两个排列数之商表示;

10)引导学生从分步乘法计数原理理解这一发现;

11)引导学生将上述解释推广,给出组合数的计算公式——组合数公式;规定Cn0=1;

12)编排例题帮助学生理解组合计数问题的解决过程和组合数的计算

12.1)例题5帮助学生体会组合数的计算;

12.2)例题6帮助学生理解组合计数问题的解决过程;设置“探究”引导学生给出其他解答;

12.3)例题7帮助学生理解排列与组合的区别;

12.4)例题8帮助学生理解帮助学生体会组合在实际抽样中的应用;体会从多个角度看待问题;

13)课后习题。

本两节理解:排列与组合问题是两类特殊的计数问题,其基本原理仍然是分类计数原理和分步计数原理。排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题。排列与组合的区别在于问题是否与顺序有关:排列问题与顺序有关,组合问题与顺序无关,顺序对排列、组合问题的求解特别重要。

【探究与发现】

本文是关于组合数的两个性质(Cnm=Cnn-m和Cn+1m=Cnm+Cnm-1)的探究。

对性质1首先引导学生通过具体数据计算发现性质;再利用“等式的两边是对同一问题的两个等价解释”引导学生找出这么一个组合问题,使得等式两边的表达式是该问题的两个不同的计数方案,从而达到证明。

对于性质2文章通过设置“探究”让学生自己利用分类加法计数原理给出解释。

【章节习题1.2】

1.3二项式定理

1.3.1二项式定理

1)开门见山(引导学生思考如何利用计数知识进行二项式展开)直接导入课题;

2)设置“探究”引导学生利用计数原理展开(a+b)2、(a+b)3、(a+b)4,并猜想(a+b)n的展开式;

3)引导学生观察、分析展开式(a+b)2=a2+2ab+b2,思考怎样与计数原理建立联系;

4)在教师的帮助下,学生发现:(a+b)2= C20 a2+ C21ab+C22b2

5)设置“探究”引导学生“类比”给出(a+b)3、(a+b)4的展开式;

6)结合以上探究,引导学生猜测:(a+b)n = Cn0an+Cn0anb1+...+Cnkan-kbk+...+ Cnnbn

7)引导学生“类比”(a+b)2的开展,联系计数原理完成对猜想的证明;

8)结合学生的发现,给出二项式定理、二项式系数、二项展开式的通项等概念;

9)编排例题帮助学生熟悉该定理、二项式系数、通项等的计算;

10)课后习题。

本节理解:本节是初中学习的多项式乘法的继续、在计数原理之后学习二项式定理,一方面是因为它的证明要用到计数原理,可以把它作为计数原理的一个应用,另一方面也是解决整除、近似计算、不等式证明的有力工具,同时也是后面的数学期望等内容的基础知识。二项式定理起着承上启下的作用,另外,由于二项式系数是一些特殊的组合数,利用二项式定理可进一步深化对组合数的认识。总之,二项式定理是综合性较强的、具有联系不同内容作用的知识。

1.3.2“杨辉三角”与二项式系数的性质

1)设置“探究(填写二项式系数表)”导入课题

2)引导学生观察系数表,发现规律;

3)引导学生将系数排成三角形后,学生观察发现:每一行中的系数具有对称性;

4)设置“探究”引导学生根据“三角形系数”进一步挖掘规律;

5)学生再次观察后发现:

5.1)在同一行中,每行两端都是1,与这两个1等距离的项的系数相等;

5.2)在相邻的两行中,除1以外的每一个数都等于它“肩上”两个数的和,即1.2节末尾【探究与发现】中的性质2;

6)穿插介绍该“三角形”为我国南宋数学家杨辉发现,也被法国帕斯卡发现,因此也称杨辉三角、帕斯卡三角;

7)引导学生从函数角度看待二次项系数;设置“疑问”引导学生作出不同指数的二次项系数的函数图象,并观察特点;

8)引导学生结合系数表和函数图形考察二次项系数的性质

8.1)对称性;

8.2)增减性和最大值;

8.3)二次项系数之和为2n;设置“疑问”引导学生解释该等式;

9)编排例题帮助学生体会杨辉三角在二项式问题中的作用;

10)课后习题。

本节理解:将二项式系数性质的讨论与“杨辉三角”结合起来,是因为“杨辉三角”蕴含了丰富的内容,由它可以直观看出二项式系数的性质,“杨辉三角”是我国古代数学重要成就之一,显示了我国古代人民的卓越智慧和才能,应抓住这一题材,对学生进行爱国主义教育,激励学生的民族自豪感。

本节内容以前面学习的二项式定理为基础,由于二项式系数组成的数列就是一个离散函数,引导学生从函数的角度研究二项式系数的性质,便于建立知识的前后联系,使学生体会用函数知识研究问题的方法,可以画出它的图象,利用几何直观、数形结合、特殊到一般的数学思想方法进行思考,这对发现规律,形成证明思路等都有好处。这一过程不仅有利于培养学生的思维能力、理性精神和实践能力,也有利于学生理解本节课的核心数学知识,发展其数学应用意识。

研究二项式系数这组特定的组合数的性质,对巩固二项式定理,建立相关知识之间的联系,进一步认识组合数、进行组合数的计算和变形都有重要的作用,对后续学习微分方程等也具有重要作用。

【探究与发现】

本文是进一步探索“杨辉三角”。

1)引导学生观察每一行,发现:它就是二项式展开的系数;

2)引导学生观察相邻两行,发现:三角形的两条腰都是由数字1组成的,其余的数都等于它肩上的两个数相加;

3)引导学生观察连线中的数字,发现:Crr+ Cr+1r + Cr+2r+...+ Cn-1r= Cnr+1

4)引导学生观察图中斜行中数字之和,发现:1=1×1,3=1×3,8=(1+1)×(1+3)=2×4,21=(1+2)×(3+4)=3×7......;

5)设问让学生再发现其他规律,并相互交流。

709cdcbaa52915546340ea52969a25af.png53ced287762569e83efe7287ea59ed94.png

【章节习题1.3】

小结

1.知识结构

07988895fca99298115f4e275e54bda3.png

2.回顾与思考

1)分类加法计数原理与分步乘法计数原理是关于计数的两个最基本原理,当我们面临一个复杂问题时,通过分类或分步,将它分解成为一些简单的问题,通过解决简单问题然后再将它们整合起来得到整个问题的解决,达到以简驭繁的效果,这是一种重要而基本的思想方法。两个计数原理就是这种思想的体现。

另一方面,如果从集合的角度来考虑,分类加法计数原理表明了这样一个事实:将集合U分成一些两两不交的子集S1,S2,... Sk,而且Si(i=1, 2,...,k)的元素个数分别为ni,那么,集合U的元素个数n=n1+n2+...+ nk;

2)数的加法与乘法是我们最熟悉的两种运算,实际上它们也是在人类计数活动中发展起来的技巧,其中乘法是加法的简便运算,这两种技巧通过推广,就发展成为本章所学习的分类加法计数原理和分步乘法计数原理。通过本章的学习,你能谈谈两个计数原理与数的加法、乘法之间的联系吗?

3)分类加法计数原理对应着“分类”活动,而且每一类方法都能完成相应的事情。例如进入一个院子要通过一道墙,这道墙左边有m个门,右边有n个门,那么进人院子的方法数为m+n。这里m, n分别表示走左、右边进入院子的方法数。分类时最重要的是要做到既不重复也不遗漏。你能用集合的语言来描述这种要求吗?

4)分步乘法计数原理对应着“分步”活动,而且只有完成每个步骤才能完成相应的事情,例如进入一个院子要通过两道墙,第1道墙有m个门,第2道墙有n个门,那么进入院子的方法数为m×n。这里m,n分别表示通过第1、第2道墙的方法。你还能用实际例子说明分步乘法计数原理的应用吗?

5)排列、组合是两类特殊的计数问题。

排列的特殊性在于排列中元素的“互异性”和“有序性”,例如“从全班50名同学中选出4名同学,分别担任班长、学习委员、文艺委员、体育委员",这就是一个排列问题,你能说明为什么这个问题有元素的“互异性”与“有序性”的特点吗?

与排列比较,组合的特殊性在于它只有元素的“互异性”而不需要考虑顺序,例如,上述问题如果改为“从全班50名同学中选出4名代表参加一项活动”,那么它就变成了一个组合问题,本质上,“从n个不同元素中取出k个元素的组合”就是这n个不同元素组成的集合的一个k元子集。

排列数公式、组合数公式的推导是两个计数原理的一个应用过程,你能回忆一下推导过程吗?

6)在证明组合数的性质时,我们采用了“构建组合意义”的方法,这种方法的依据就是对同一问题的两种解释应该“殊途同归”,当我们面临一个问题时,往往需要用已有知识对其进行重新解释,这个过程实际上是一个对问题的理解过程,化未知为已知的过程,它对问题的解决经常是至关重要的。

7)在推导二项式定理时,我们应用了两个计数原理,而这种应用也是基于我们在多项式乘法中的经验:每一项都是an-kbk(k=0, 1, ..., n)的形式,而用两个计数原理来解释得到an-kbk的步骤,就可以得出其同类项的个数为Cnk个的结论。这个过程值得我们认真回味。

8)在得出两个计数原理、排列数公式、组合数公式以及二项式定理时,我们始终是从一些简单、具体事例出发,从中获得解决一般性问题的经验,得出解决一般问题的思路。这也是学习数学乃至学习其他学科时可以借鉴的常用方法。

【总复习题】

0775e1d5761233a9f0ea87de61ecf714.png

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值