易错题分析系列---加法原理与乘法原理
杨瀚
典型例题:年级组准备举行趣味运动会,现在有三个比赛项目,一班有4名同学报名参加.
(1)每项比赛都需要一个且只能有一个同学参加,则有_______种参赛安排;
(2)每位同学都参加且只参加一项比赛,则有_______种参赛安排.
错因分析:(1)问中错误答案有:

种或者

种. 错解为81的原因是因为使用分步原理时,完成事件的步骤划分错误. 错误的认为完成参赛安排的步骤应该划分为4步,每1名同学选择参加一项比赛;错解为24的原因是因为在使用分步计数时,认为元素是属于无放回模型,审题不清导致出错;(2)问中的错误答案有:

种,错误的原因也是完成事件的步骤划分错误. 错误的认为完成参赛安排的步骤应该划分为3步,每1项比赛选择1名同学参加.
正解:(1)完成参赛安排的步骤应该划分为3步,第一步:在4名同学中选择1名参加比赛项目1,有4种选择;第二步:在4名同学中选择1名参加比赛项目2,有4种选择;第三步:在4名同学中选择1名参加比赛项目3,有4种选择. 由分步原理知:有

种参赛安排.
(2)完成参赛安排的的步骤应该划分为4步,第一步:第1名同学选择一项参赛项目,有3种选择;第二步:第2名同学选择一项参赛项目,有3种选择;第三步:第3名同学选择一项参赛项目,有3种选择;第四步:最后1名同学选择一项参赛项目,有3种选择. 由分步原理知:有

种参赛安排.
变式练习:
练习1.教学大楼共有四层,每层都有东西两个楼梯,从一层到四层共有________种走法.
练习2. 现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是_________.
练习3. 现有4名同学争夺三项冠军,冠军获得者的可能种数是_________.
练习4. 十字路口来往的车辆,如果不允许回头,则行车路线共有_________种.
参考答案:练习1:【答案】8;
练习2:【答案】

练习3:【答案】64;
练习4:【答案】12