CVPR2021论文详解Rainbow Memory: Continual Learning with a Memory of Diverse Samples

提出一种名为RainbowMemory的方法,该方法通过衡量样本的不确定性来选择最具多样性的样本放入记忆库,用于增量学习任务。实验结果显示,该方法能够显著提高模型在连续学习过程中的性能。

论文地址:

https://arxiv.org/abs/2103.17230

代码地址:

https://github.com/clovaai/rainbow-memory

目录

1.贡献点

2.方法

2.1问题定义

2.2 uncertainty衡量标准

2.3算法流程

2.4 数据增强

3.实验

4.结论


本文基于样本回放的方法,本文某种意义上借鉴了主动学习中找难样本的方法,将找到的难样本作为Memory中用于回放的样本。

本文的意义在于如何寻找难样本。

1.贡献点

因为本文涉及memory,因此可以看作基于样本回放的增量学习方法。本文解决的问题是,如何选取更好的样本来放置在Memory之中。

基于增量学习的任务,旧任务和新任务之间界限分明。但是实际上很多时候旧任务和新任务的边界并不清晰,因此本文基于‘blurry’的task boundary来优化问题。(这里的blurry在后面又详细的定义,意思是不同的增量task之间是否有共有类,其实相当于广义的类别增量问题。)

为了让memory中的样本保持多样性,本文提出了Rainbow Memory(RM),

 

随时根据新样本更新Episodic Memory,然后根据Mmory进行DA(Data augmentation)来进行多样化。

2.方法

2.1问题定义

  • C表示所有的类别,
  • Tt表示task t之中的类别,相当于C的子集
  • D上标C下标c表示所有类别C中子类c的样本
  • D上标T下标t表示task t中类别c的样本

评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

祥瑞Coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值