论文地址:
https://arxiv.org/abs/2103.17230
代码地址:
https://github.com/clovaai/rainbow-memory
目录
本文基于样本回放的方法,本文某种意义上借鉴了主动学习中找难样本的方法,将找到的难样本作为Memory中用于回放的样本。
本文的意义在于如何寻找难样本。
1.贡献点
因为本文涉及memory,因此可以看作基于样本回放的增量学习方法。本文解决的问题是,如何选取更好的样本来放置在Memory之中。
基于增量学习的任务,旧任务和新任务之间界限分明。但是实际上很多时候旧任务和新任务的边界并不清晰,因此本文基于‘blurry’的task boundary来优化问题。(这里的blurry在后面又详细的定义,意思是不同的增量task之间是否有共有类,其实相当于广义的类别增量问题。)
为了让memory中的样本保持多样性,本文提出了Rainbow Memory(RM),

随时根据新样本更新Episodic Memory,然后根据Mmory进行DA(Data augmentation)来进行多样化。
2.方法
2.1问题定义

- C表示所有的类别,
- Tt表示task t之中的类别,相当于C的子集
- D上标C下标c表示所有类别C中子类c的样本
- D上标T下标t表示task t中类别c的样本

提出一种名为RainbowMemory的方法,该方法通过衡量样本的不确定性来选择最具多样性的样本放入记忆库,用于增量学习任务。实验结果显示,该方法能够显著提高模型在连续学习过程中的性能。
最低0.47元/天 解锁文章
2301





