TPCIL论文详解,基于持续改进分类器的增量学习Topology-Preserving Class-Incremental Learning,ECCV2020

ECCV 2020

论文地址:https://doi.org/10.1007/978-3-030-58529-7_16

代码地址:论文中称,代码 will be released

西交大发表的。单看标题推测是运用Graph和拓扑学的知识来进行增量学习。基于正则化的增量学习方法。近两年很多论文都有类似想法,就是将CNN与Graph相结合来进行增量学习,用CNN提取模型特征,获得embedding信息,Graph网络用于学习特征之间的拓扑关系。

利用拓扑关系进行增量学习的相关论文:

CVPR2020 ,FSCIL Few-shot Class Incremental Learning。将NG网络运用到增量学习之中。

FSCIL论文详解 Few-Shot Class-Incremental Learning, CVPR2020_祥瑞的技术博客-CSDN博客

ECCV2020,TPCIL,本篇,Topology Preserving Class-Incremental learning,同样的框架,即CNN+拓扑结构,部分内容换了一个写法。

基于拓扑的增量学习Topology Preserving Class-Incremental learning论文详解ECCV2020_祥瑞的技术博客-CSDN博客

CVPR2021与本篇非常类似,Few-Shot Incremental Learning with Continually Evolved Classifiers,南洋理工大学提出,也是运用Graph的知识,将GAT(Graph Attention Network)用于增量学习。

Few Shot Incremental Learning with Continually Evolved Classifiers论文详解 基于持续进化分类器的小样本类别增量学习CVPR2021_祥瑞的技术博客-CSDN博客

目录

1.贡献点

2.方法

2.1总体方法

2.2 EHG(Elastic Hebbian Graph)

3.实验

4. 结论


 

1.贡献点

本文提出了Topology Preserving Class Incremental Learning(TPCIL)框架,

运用 Elastic Hebbian Graph (EHG)来进行feature域的建模

运用Topology-preserving loss(TPL)促进EHG的学习。

 

直观来看,TPL对于学习的促进:

经过40个epoch的训练,TPCIL比LUCIR样本的feature获得了更高的收敛程度。

 

2.方法

2.1总体方法

本文总体框架较为简单,相当于一个CNN加一个图模型G,G就是本文贡献点的Graph模型EHG(Elastic Hebbian Graph). Loss运用交叉熵和TPL相结合,TPL(Topology-Preserving)即用于训练G的loss,

交叉熵CE用于根据task t的样本X训练CNN参数和图模型G,TPL用于训练G和CNN。

对于EHG和CHL的作用粗略如下图所示:

 

  • 表示N个点的初始化的EHG,
  • 通过CHL,图形成了节点与节点之间的连接关系
  • 对CNN进行finetune,改变了特征空间上的点的位置
  • 但是TPL和EHG依然保持着之前的拓扑关系
  • 学习新类,则EHG会增加新的拓扑节点与链接关系

2.2 EHG(Elastic Hebbian Graph)

本文为了建模方便,将feture space的特征转化到cosine空间。上划线表示正则化操作,转化为单位向量。EHG的公式如下:

此公式跟FSCIL的公式(Few-Shot Class-Incremental Learning,CVPR2020的公式一模一样。)意义就是新样本到来之后,用新样本更新所有的节点,越近的节点更新越多,越远的节点更新越少。文中涉及一些graph模型的推导,因此对graph不太熟悉,所以我在此将其跳过,只留下重点的结论。

文中所提的TPL(Topology-preserving Loss)经过推导后如下:

其中

sij可以理解为样本i和样本j经过模型特征提取后在特征空间的余弦距离。sij表示初始的余弦距离,sij表示增量任务t到来之后的余弦距离。TPL可以粗略的理解为,旧的ij之间的关系和新的ij之间的关系尽可能接近。从而保持拓扑结构的稳定。

因为博主没有其他公式推导的部分,对这个Graph网络了解也不多,所以公式的物理意义方面理解的不透彻。

3.实验

通过t-SNE可视化,新类的学习过程,特征空间上的点分的更开。

可见本文方法优于其他同类的方法,仅次于联合训练。

4. 结论

思路:CNN+Graph模型

CNN提取特征,Graph模型提取模型之间的拓扑关系。

此思路作者发过一篇CVPR2020,经过变换又投了ICCV2020.

 

CVPR2020 ,FSCIL Few-shot Class Incremental Learning。将NG网络运用到增量学习之中。

FSCIL论文详解 Few-Shot Class-Incremental Learning, CVPR2020_祥瑞的技术博客-CSDN博客

ECCV2020,TPCIL,本篇,Topology Preserving Class-Incremental learning,同样的框架,即CNN+拓扑结构,部分内容换了一个写法。

基于拓扑的增量学习Topology Preserving Class-Incremental learning论文详解ECCV2020_祥瑞的技术博客-CSDN博客

CVPR2021与本篇非常类似,Few-Shot Incremental Learning with Continually Evolved Classifiers,南洋理工大学提出,也是运用Graph的知识,将GAT(Graph Attention Network)用于增量学习。

Few Shot Incremental Learning with Continually Evolved Classifiers论文详解 基于持续进化分类器的小样本类别增量学习CVPR2021_祥瑞的技术博客-CSDN博客

近期不少将Graph模型用于增量学习的,效果都不错,均取得了SOTA结果。并且Graph在增量的运用较新,加入一定的可解释性,很好发论文。

 

 

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
Topology-master是指在分布式系统中负责管理和控制拓扑信息的主节点。拓扑信息是指分布式系统中各个节点之间的连接关系和通信方式。在分布式系统中,各个节点需要相互通信和协作,为了更高效地组织和管理节点之间的连接关系,需要有一个独立的节点来负责管理和控制拓扑信息,这个节点就是Topology-masterTopology-master的主要工作包括: 1. 节点管理:Topology-master负责记录系统中所有节点的信息,包括节点的状态、地址、资源等。它可以监控节点的运行状态,对不正常的节点进行管理和处理,保证系统的正常运行。 2. 连接管理:Topology-master负责管理节点之间的连接关系,包括建立、维持和更新节点之间的通信链接。它可以检测节点之间的连接是否正常,当出现连接故障时,可以及时处理并恢复连接,确保节点之间的通信畅通。 3. 负载均衡:Topology-master可以根据系统的负载情况对节点进行负载均衡,将任务合理地分配给各个节点,避免某个节点过载而导致系统性能下降。它可以根据节点的资源情况和任务的需求进行动态调度,提高系统的整体效率和吞吐量。 4. 拓扑管理:Topology-master负责管理系统中的拓扑信息,包括节点之间的物理拓扑和逻辑拓扑。它可以根据拓扑的变化来进行相应的调整和优化,确保系统的可扩展性和稳定性。 5. 安全管理:Topology-master可以负责对节点之间的通信进行安全管理,确保通信的机密性和完整性。它可以对通信进行加密和验证,防止未授权的节点接入系统,保护系统的安全性。 总之,Topology-master在分布式系统中是一个重要的节点,它负责管理和控制拓扑信息,保证系统的正常运行和性能优化。它具有节点管理、连接管理、负载均衡、拓扑管理和安全管理等功能,为整个系统提供了稳定、高效和安全的通信环境。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

祥瑞Coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值