Few Shot Incremental Learning with Continually Evolved Classifiers
CVPR2021,由新加坡南洋理工大学
本文利用Graph即图模型,将拓扑结构与增量模型向结合,从而取得不错的效果。
类似论文,均是基于双阶段的增量模型,一个是特征提取模块,另一个是分类器模块。
对于Rehearsal的方法而言,特征提取模块可能一起更新。
对于本文的方法而言,特征提取模块一旦初始训练好,就固定下来,只更新分类器模块。本文的分类器模块与GAT(Graph Attention Network)相结合。
基于拓扑结构的增量学习:
CVPR2020 ,FSCIL Few-shot Class Incremental Learning。将NG网络运用到增量学习之中。
FSCIL论文详解 Few-Shot Class-Incremental Learning, CVPR2020_祥瑞的技术博客-CSDN博客
ECCV2020,TPCIL,本篇,Topology Preserving Class-Incremental learning,同样的框架,即CNN+拓扑结构,部分内容换了一个写法。
基于拓扑的增量学习Topology Preserving Class-Incremental learning论文详解ECCV2020_祥瑞的技术博客-CSDN博客
CVPR2021与本篇非常类似,Few-Shot Incremental Learning with Continually Evolved Classifiers,南洋理工大学提出,也是运用Graph的知识,将GAT(Graph Attention Network)用于增量学习。
本文地址:
[2104.03047] Few-Shot Incremental Learning with Continually Evolved Classifiers (arxiv.org)
另一篇论文地址:
[2103.16788] DER: Dynamically Expandable Representation for Class Incremental Learning (arxiv.org)
目录
2.1 CEC(continually evolved classifier)
2.3 Pseudo Incremental Learning
1.贡献点
本文依然解决Few-shot class incremental learning(FSCIL)问题,从两个方面来进行解决:
特征提取模块与分类器解耦,每次增量任务只更新分类器。特征提取模块是pretrain好的backbone, 分类器是non-parameter的class mean classifier(个人猜测类似于NCM)
为了使得分类器适用于所有类别,本文提出Continually Evolved Classifier (CEC),将graph模型应用于分类器。
多个数据集上SOTA

2. 方法
2.1 模型框架
对FSCIL问题,base数据大量,inc数据较少,因此用base数据训练backbone即可。用calssfier来试应增量任务的变化。
即使对旧任务,学到了很好的分类边界,但是因为新任务的到来,旧模型的决策边界可能不好用了。因此本文引入新的Continually Evolved Classifier (CEC)来进行适应。将Graph Attention Network(GAT,ICML2018)图注意力模型。引入到此模型之中。从而实现了

先用base数据D0train
训练获得backbone R
的权重,
然后利用base数据作为伪增量,训练Graph模型获得权重{
W0}
,
随着增量任务的到来,Graph模型的节点和权重随之增加,权重增加为{
W0,W1},再增加到{
W0,W1,…,Wi}![]()

本文提出一种小样本类别增量学习方法,结合图注意力网络(GAT),仅更新分类器,保持特征提取器不变,并引入伪增量学习提高准确性。
最低0.47元/天 解锁文章
2294

被折叠的 条评论
为什么被折叠?



